1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
|
/* blas/dtrmm.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< >*/
/* Subroutine */ int dtrmm_(char *side, char *uplo, char *transa, char *diag,
integer *m, integer *n, doublereal *alpha, doublereal *a, integer *
lda, doublereal *b, integer *ldb, ftnlen side_len, ftnlen uplo_len,
ftnlen transa_len, ftnlen diag_len)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
/* Local variables */
integer i__, j, k, info;
doublereal temp;
logical lside;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer nrowa;
logical upper;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
logical nounit;
(void)side_len;
(void)uplo_len;
(void)transa_len;
(void)diag_len;
/* .. Scalar Arguments .. */
/*< CHARACTER*1 SIDE, UPLO, TRANSA, DIAG >*/
/*< INTEGER M, N, LDA, LDB >*/
/*< DOUBLE PRECISION ALPHA >*/
/* .. Array Arguments .. */
/*< DOUBLE PRECISION A( LDA, * ), B( LDB, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* DTRMM performs one of the matrix-matrix operations */
/* B := alpha*op( A )*B, or B := alpha*B*op( A ), */
/* where alpha is a scalar, B is an m by n matrix, A is a unit, or */
/* non-unit, upper or lower triangular matrix and op( A ) is one of */
/* op( A ) = A or op( A ) = A'. */
/* Parameters */
/* ========== */
/* SIDE - CHARACTER*1. */
/* On entry, SIDE specifies whether op( A ) multiplies B from */
/* the left or right as follows: */
/* SIDE = 'L' or 'l' B := alpha*op( A )*B. */
/* SIDE = 'R' or 'r' B := alpha*B*op( A ). */
/* Unchanged on exit. */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the matrix A is an upper or */
/* lower triangular matrix as follows: */
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
/* Unchanged on exit. */
/* TRANSA - CHARACTER*1. */
/* On entry, TRANSA specifies the form of op( A ) to be used in */
/* the matrix multiplication as follows: */
/* TRANSA = 'N' or 'n' op( A ) = A. */
/* TRANSA = 'T' or 't' op( A ) = A'. */
/* TRANSA = 'C' or 'c' op( A ) = A'. */
/* Unchanged on exit. */
/* DIAG - CHARACTER*1. */
/* On entry, DIAG specifies whether or not A is unit triangular */
/* as follows: */
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
/* DIAG = 'N' or 'n' A is not assumed to be unit */
/* triangular. */
/* Unchanged on exit. */
/* M - INTEGER. */
/* On entry, M specifies the number of rows of B. M must be at */
/* least zero. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the number of columns of B. N must be */
/* at least zero. */
/* Unchanged on exit. */
/* ALPHA - DOUBLE PRECISION. */
/* On entry, ALPHA specifies the scalar alpha. When alpha is */
/* zero then A is not referenced and B need not be set before */
/* entry. */
/* Unchanged on exit. */
/* A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m */
/* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. */
/* Before entry with UPLO = 'U' or 'u', the leading k by k */
/* upper triangular part of the array A must contain the upper */
/* triangular matrix and the strictly lower triangular part of */
/* A is not referenced. */
/* Before entry with UPLO = 'L' or 'l', the leading k by k */
/* lower triangular part of the array A must contain the lower */
/* triangular matrix and the strictly upper triangular part of */
/* A is not referenced. */
/* Note that when DIAG = 'U' or 'u', the diagonal elements of */
/* A are not referenced either, but are assumed to be unity. */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. When SIDE = 'L' or 'l' then */
/* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' */
/* then LDA must be at least max( 1, n ). */
/* Unchanged on exit. */
/* B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). */
/* Before entry, the leading m by n part of the array B must */
/* contain the matrix B, and on exit is overwritten by the */
/* transformed matrix. */
/* LDB - INTEGER. */
/* On entry, LDB specifies the first dimension of B as declared */
/* in the calling (sub) program. LDB must be at least */
/* max( 1, m ). */
/* Unchanged on exit. */
/* Level 3 Blas routine. */
/* -- Written on 8-February-1989. */
/* Jack Dongarra, Argonne National Laboratory. */
/* Iain Duff, AERE Harwell. */
/* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
/* Sven Hammarling, Numerical Algorithms Group Ltd. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA >*/
/* .. Intrinsic Functions .. */
/*< INTRINSIC MAX >*/
/* .. Local Scalars .. */
/*< LOGICAL LSIDE, NOUNIT, UPPER >*/
/*< INTEGER I, INFO, J, K, NROWA >*/
/*< DOUBLE PRECISION TEMP >*/
/* .. Parameters .. */
/*< DOUBLE PRECISION ONE , ZERO >*/
/*< PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/*< LSIDE = LSAME( SIDE , 'L' ) >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
lside = lsame_(side, "L", (ftnlen)1, (ftnlen)1);
/*< IF( LSIDE )THEN >*/
if (lside) {
/*< NROWA = M >*/
nrowa = *m;
/*< ELSE >*/
} else {
/*< NROWA = N >*/
nrowa = *n;
/*< END IF >*/
}
/*< NOUNIT = LSAME( DIAG , 'N' ) >*/
nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
/*< UPPER = LSAME( UPLO , 'U' ) >*/
upper = lsame_(uplo, "U", (ftnlen)1, (ftnlen)1);
/*< INFO = 0 >*/
info = 0;
/*< >*/
if (! lside && ! lsame_(side, "R", (ftnlen)1, (ftnlen)1)) {
/*< INFO = 1 >*/
info = 1;
/*< >*/
} else if (! upper && ! lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
/*< INFO = 2 >*/
info = 2;
/*< >*/
} else if (! lsame_(transa, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(transa,
"T", (ftnlen)1, (ftnlen)1) && ! lsame_(transa, "C", (ftnlen)1, (
ftnlen)1)) {
/*< INFO = 3 >*/
info = 3;
/*< >*/
} else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
"N", (ftnlen)1, (ftnlen)1)) {
/*< INFO = 4 >*/
info = 4;
/*< ELSE IF( M .LT.0 )THEN >*/
} else if (*m < 0) {
/*< INFO = 5 >*/
info = 5;
/*< ELSE IF( N .LT.0 )THEN >*/
} else if (*n < 0) {
/*< INFO = 6 >*/
info = 6;
/*< ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN >*/
} else if (*lda < max(1,nrowa)) {
/*< INFO = 9 >*/
info = 9;
/*< ELSE IF( LDB.LT.MAX( 1, M ) )THEN >*/
} else if (*ldb < max(1,*m)) {
/*< INFO = 11 >*/
info = 11;
/*< END IF >*/
}
/*< IF( INFO.NE.0 )THEN >*/
if (info != 0) {
/*< CALL XERBLA( 'DTRMM ', INFO ) >*/
xerbla_("DTRMM ", &info, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible. */
/*< >*/
if (*n == 0) {
return 0;
}
/* And when alpha.eq.zero. */
/*< IF( ALPHA.EQ.ZERO )THEN >*/
if (*alpha == 0.) {
/*< DO 20, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 10, I = 1, M >*/
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< B( I, J ) = ZERO >*/
b[i__ + j * b_dim1] = 0.;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< 20 CONTINUE >*/
/* L20: */
}
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Start the operations. */
/*< IF( LSIDE )THEN >*/
if (lside) {
/*< IF( LSAME( TRANSA, 'N' ) )THEN >*/
if (lsame_(transa, "N", (ftnlen)1, (ftnlen)1)) {
/* Form B := alpha*A*B. */
/*< IF( UPPER )THEN >*/
if (upper) {
/*< DO 50, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 40, K = 1, M >*/
i__2 = *m;
for (k = 1; k <= i__2; ++k) {
/*< IF( B( K, J ).NE.ZERO )THEN >*/
if (b[k + j * b_dim1] != 0.) {
/*< TEMP = ALPHA*B( K, J ) >*/
temp = *alpha * b[k + j * b_dim1];
/*< DO 30, I = 1, K - 1 >*/
i__3 = k - 1;
for (i__ = 1; i__ <= i__3; ++i__) {
/*< B( I, J ) = B( I, J ) + TEMP*A( I, K ) >*/
b[i__ + j * b_dim1] += temp * a[i__ + k *
a_dim1];
/*< 30 CONTINUE >*/
/* L30: */
}
/*< >*/
if (nounit) {
temp *= a[k + k * a_dim1];
}
/*< B( K, J ) = TEMP >*/
b[k + j * b_dim1] = temp;
/*< END IF >*/
}
/*< 40 CONTINUE >*/
/* L40: */
}
/*< 50 CONTINUE >*/
/* L50: */
}
/*< ELSE >*/
} else {
/*< DO 80, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 70 K = M, 1, -1 >*/
for (k = *m; k >= 1; --k) {
/*< IF( B( K, J ).NE.ZERO )THEN >*/
if (b[k + j * b_dim1] != 0.) {
/*< TEMP = ALPHA*B( K, J ) >*/
temp = *alpha * b[k + j * b_dim1];
/*< B( K, J ) = TEMP >*/
b[k + j * b_dim1] = temp;
/*< >*/
if (nounit) {
b[k + j * b_dim1] *= a[k + k * a_dim1];
}
/*< DO 60, I = K + 1, M >*/
i__2 = *m;
for (i__ = k + 1; i__ <= i__2; ++i__) {
/*< B( I, J ) = B( I, J ) + TEMP*A( I, K ) >*/
b[i__ + j * b_dim1] += temp * a[i__ + k *
a_dim1];
/*< 60 CONTINUE >*/
/* L60: */
}
/*< END IF >*/
}
/*< 70 CONTINUE >*/
/* L70: */
}
/*< 80 CONTINUE >*/
/* L80: */
}
/*< END IF >*/
}
/*< ELSE >*/
} else {
/* Form B := alpha*A'*B. */
/*< IF( UPPER )THEN >*/
if (upper) {
/*< DO 110, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 100, I = M, 1, -1 >*/
for (i__ = *m; i__ >= 1; --i__) {
/*< TEMP = B( I, J ) >*/
temp = b[i__ + j * b_dim1];
/*< >*/
if (nounit) {
temp *= a[i__ + i__ * a_dim1];
}
/*< DO 90, K = 1, I - 1 >*/
i__2 = i__ - 1;
for (k = 1; k <= i__2; ++k) {
/*< TEMP = TEMP + A( K, I )*B( K, J ) >*/
temp += a[k + i__ * a_dim1] * b[k + j * b_dim1];
/*< 90 CONTINUE >*/
/* L90: */
}
/*< B( I, J ) = ALPHA*TEMP >*/
b[i__ + j * b_dim1] = *alpha * temp;
/*< 100 CONTINUE >*/
/* L100: */
}
/*< 110 CONTINUE >*/
/* L110: */
}
/*< ELSE >*/
} else {
/*< DO 140, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 130, I = 1, M >*/
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< TEMP = B( I, J ) >*/
temp = b[i__ + j * b_dim1];
/*< >*/
if (nounit) {
temp *= a[i__ + i__ * a_dim1];
}
/*< DO 120, K = I + 1, M >*/
i__3 = *m;
for (k = i__ + 1; k <= i__3; ++k) {
/*< TEMP = TEMP + A( K, I )*B( K, J ) >*/
temp += a[k + i__ * a_dim1] * b[k + j * b_dim1];
/*< 120 CONTINUE >*/
/* L120: */
}
/*< B( I, J ) = ALPHA*TEMP >*/
b[i__ + j * b_dim1] = *alpha * temp;
/*< 130 CONTINUE >*/
/* L130: */
}
/*< 140 CONTINUE >*/
/* L140: */
}
/*< END IF >*/
}
/*< END IF >*/
}
/*< ELSE >*/
} else {
/*< IF( LSAME( TRANSA, 'N' ) )THEN >*/
if (lsame_(transa, "N", (ftnlen)1, (ftnlen)1)) {
/* Form B := alpha*B*A. */
/*< IF( UPPER )THEN >*/
if (upper) {
/*< DO 180, J = N, 1, -1 >*/
for (j = *n; j >= 1; --j) {
/*< TEMP = ALPHA >*/
temp = *alpha;
/*< >*/
if (nounit) {
temp *= a[j + j * a_dim1];
}
/*< DO 150, I = 1, M >*/
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< B( I, J ) = TEMP*B( I, J ) >*/
b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
/*< 150 CONTINUE >*/
/* L150: */
}
/*< DO 170, K = 1, J - 1 >*/
i__1 = j - 1;
for (k = 1; k <= i__1; ++k) {
/*< IF( A( K, J ).NE.ZERO )THEN >*/
if (a[k + j * a_dim1] != 0.) {
/*< TEMP = ALPHA*A( K, J ) >*/
temp = *alpha * a[k + j * a_dim1];
/*< DO 160, I = 1, M >*/
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< B( I, J ) = B( I, J ) + TEMP*B( I, K ) >*/
b[i__ + j * b_dim1] += temp * b[i__ + k *
b_dim1];
/*< 160 CONTINUE >*/
/* L160: */
}
/*< END IF >*/
}
/*< 170 CONTINUE >*/
/* L170: */
}
/*< 180 CONTINUE >*/
/* L180: */
}
/*< ELSE >*/
} else {
/*< DO 220, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< TEMP = ALPHA >*/
temp = *alpha;
/*< >*/
if (nounit) {
temp *= a[j + j * a_dim1];
}
/*< DO 190, I = 1, M >*/
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< B( I, J ) = TEMP*B( I, J ) >*/
b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
/*< 190 CONTINUE >*/
/* L190: */
}
/*< DO 210, K = J + 1, N >*/
i__2 = *n;
for (k = j + 1; k <= i__2; ++k) {
/*< IF( A( K, J ).NE.ZERO )THEN >*/
if (a[k + j * a_dim1] != 0.) {
/*< TEMP = ALPHA*A( K, J ) >*/
temp = *alpha * a[k + j * a_dim1];
/*< DO 200, I = 1, M >*/
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
/*< B( I, J ) = B( I, J ) + TEMP*B( I, K ) >*/
b[i__ + j * b_dim1] += temp * b[i__ + k *
b_dim1];
/*< 200 CONTINUE >*/
/* L200: */
}
/*< END IF >*/
}
/*< 210 CONTINUE >*/
/* L210: */
}
/*< 220 CONTINUE >*/
/* L220: */
}
/*< END IF >*/
}
/*< ELSE >*/
} else {
/* Form B := alpha*B*A'. */
/*< IF( UPPER )THEN >*/
if (upper) {
/*< DO 260, K = 1, N >*/
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
/*< DO 240, J = 1, K - 1 >*/
i__2 = k - 1;
for (j = 1; j <= i__2; ++j) {
/*< IF( A( J, K ).NE.ZERO )THEN >*/
if (a[j + k * a_dim1] != 0.) {
/*< TEMP = ALPHA*A( J, K ) >*/
temp = *alpha * a[j + k * a_dim1];
/*< DO 230, I = 1, M >*/
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
/*< B( I, J ) = B( I, J ) + TEMP*B( I, K ) >*/
b[i__ + j * b_dim1] += temp * b[i__ + k *
b_dim1];
/*< 230 CONTINUE >*/
/* L230: */
}
/*< END IF >*/
}
/*< 240 CONTINUE >*/
/* L240: */
}
/*< TEMP = ALPHA >*/
temp = *alpha;
/*< >*/
if (nounit) {
temp *= a[k + k * a_dim1];
}
/*< IF( TEMP.NE.ONE )THEN >*/
if (temp != 1.) {
/*< DO 250, I = 1, M >*/
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< B( I, K ) = TEMP*B( I, K ) >*/
b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
/*< 250 CONTINUE >*/
/* L250: */
}
/*< END IF >*/
}
/*< 260 CONTINUE >*/
/* L260: */
}
/*< ELSE >*/
} else {
/*< DO 300, K = N, 1, -1 >*/
for (k = *n; k >= 1; --k) {
/*< DO 280, J = K + 1, N >*/
i__1 = *n;
for (j = k + 1; j <= i__1; ++j) {
/*< IF( A( J, K ).NE.ZERO )THEN >*/
if (a[j + k * a_dim1] != 0.) {
/*< TEMP = ALPHA*A( J, K ) >*/
temp = *alpha * a[j + k * a_dim1];
/*< DO 270, I = 1, M >*/
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< B( I, J ) = B( I, J ) + TEMP*B( I, K ) >*/
b[i__ + j * b_dim1] += temp * b[i__ + k *
b_dim1];
/*< 270 CONTINUE >*/
/* L270: */
}
/*< END IF >*/
}
/*< 280 CONTINUE >*/
/* L280: */
}
/*< TEMP = ALPHA >*/
temp = *alpha;
/*< >*/
if (nounit) {
temp *= a[k + k * a_dim1];
}
/*< IF( TEMP.NE.ONE )THEN >*/
if (temp != 1.) {
/*< DO 290, I = 1, M >*/
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< B( I, K ) = TEMP*B( I, K ) >*/
b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
/*< 290 CONTINUE >*/
/* L290: */
}
/*< END IF >*/
}
/*< 300 CONTINUE >*/
/* L300: */
}
/*< END IF >*/
}
/*< END IF >*/
}
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of DTRMM . */
/*< END >*/
} /* dtrmm_ */
#ifdef __cplusplus
}
#endif
|