File: hqr.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (520 lines) | stat: -rw-r--r-- 15,690 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
/* eispack/hqr.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/*<       subroutine hqr(nm,n,low,igh,h,wr,wi,ierr) >*/
/* Subroutine */ int hqr_(integer *nm, integer *n, integer *low, integer *igh,
         doublereal *h__, doublereal *wr, doublereal *wi, integer *ierr)
{
    /* System generated locals */
    integer h_dim1, h_offset, i__1, i__2, i__3;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal), d_sign(doublereal *, doublereal *);

    /* Local variables */
    integer i__, j, k, l=0, m=0;
    doublereal p, q=0, r__=0, s, t, w, x, y;
    integer na, en, ll, mm;
    doublereal zz;
    integer mp2, itn, its, enm2;
    doublereal tst1, tst2, norm;
    logical notlas;

/*  RESTORED CORRECT INDICES OF LOOPS (200,210,230,240). (9/29/89 BSG) */

/*<       integer i,j,k,l,m,n,en,ll,mm,na,nm,igh,itn,its,low,mp2,enm2,ierr >*/
/*<       double precision h(nm,n),wr(n),wi(n) >*/
/*<       double precision p,q,r,s,t,w,x,y,zz,norm,tst1,tst2 >*/
/*<       logical notlas >*/

/*     this subroutine is a translation of the algol procedure hqr, */
/*     num. math. 14, 219-231(1970) by martin, peters, and wilkinson. */
/*     handbook for auto. comp., vol.ii-linear algebra, 359-371(1971). */

/*     this subroutine finds the eigenvalues of a real */
/*     upper hessenberg matrix by the qr method. */

/*     on input */

/*        nm must be set to the row dimension of two-dimensional */
/*          array parameters as declared in the calling program */
/*          dimension statement. */

/*        n is the order of the matrix. */

/*        low and igh are integers determined by the balancing */
/*          subroutine  balanc.  if  balanc  has not been used, */
/*          set low=1, igh=n. */

/*        h contains the upper hessenberg matrix.  information about */
/*          the transformations used in the reduction to hessenberg */
/*          form by  elmhes  or  orthes, if performed, is stored */
/*          in the remaining triangle under the hessenberg matrix. */

/*     on output */

/*        h has been destroyed.  therefore, it must be saved */
/*          before calling  hqr  if subsequent calculation and */
/*          back transformation of eigenvectors is to be performed. */

/*        wr and wi contain the real and imaginary parts, */
/*          respectively, of the eigenvalues.  the eigenvalues */
/*          are unordered except that complex conjugate pairs */
/*          of values appear consecutively with the eigenvalue */
/*          having the positive imaginary part first.  if an */
/*          error exit is made, the eigenvalues should be correct */
/*          for indices ierr+1,...,n. */

/*        ierr is set to */
/*          zero       for normal return, */
/*          j          if the limit of 30*n iterations is exhausted */
/*                     while the j-th eigenvalue is being sought. */

/*     questions and comments should be directed to burton s. garbow, */
/*     mathematics and computer science div, argonne national laboratory */

/*     this version dated september 1989. */

/*     ------------------------------------------------------------------ */

/*<       ierr = 0 >*/
    /* Parameter adjustments */
    --wi;
    --wr;
    h_dim1 = *nm;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;

    /* Function Body */
    *ierr = 0;
/*<       norm = 0.0d0 >*/
    norm = 0.;
/*<       k = 1 >*/
    k = 1;
/*     .......... store roots isolated by balanc */
/*                and compute matrix norm .......... */
/*<       do 50 i = 1, n >*/
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {

/*<          do 40 j = k, n >*/
        i__2 = *n;
        for (j = k; j <= i__2; ++j) {
/*<    40    norm = norm + dabs(h(i,j)) >*/
/* L40: */
            norm += (d__1 = h__[i__ + j * h_dim1], abs(d__1));
        }

/*<          k = i >*/
        k = i__;
/*<          if (i .ge. low .and. i .le. igh) go to 50 >*/
        if (i__ >= *low && i__ <= *igh) {
            goto L50;
        }
/*<          wr(i) = h(i,i) >*/
        wr[i__] = h__[i__ + i__ * h_dim1];
/*<          wi(i) = 0.0d0 >*/
        wi[i__] = 0.;
/*<    50 continue >*/
L50:
        ;
    }

/*<       en = igh >*/
    en = *igh;
/*<       t = 0.0d0 >*/
    t = 0.;
/*<       itn = 30*n >*/
    itn = *n * 30;
/*     .......... search for next eigenvalues .......... */
/*<    60 if (en .lt. low) go to 1001 >*/
L60:
    if (en < *low) {
        goto L1001;
    }
/*<       its = 0 >*/
    its = 0;
/*<       na = en - 1 >*/
    na = en - 1;
/*<       enm2 = na - 1 >*/
    enm2 = na - 1;
/*     .......... look for single small sub-diagonal element */
/*                for l=en step -1 until low do -- .......... */
/*<    70 do 80 ll = low, en >*/
L70:
    i__1 = en;
    for (ll = *low; ll <= i__1; ++ll) {
/*<          l = en + low - ll >*/
        l = en + *low - ll;
/*<          if (l .eq. low) go to 100 >*/
        if (l == *low) {
            goto L100;
        }
/*<          s = dabs(h(l-1,l-1)) + dabs(h(l,l)) >*/
        s = (d__1 = h__[l - 1 + (l - 1) * h_dim1], abs(d__1)) + (d__2 = h__[l 
                + l * h_dim1], abs(d__2));
/*<          if (s .eq. 0.0d0) s = norm >*/
        if (s == 0.) {
            s = norm;
        }
/*<          tst1 = s >*/
        tst1 = s;
/*<          tst2 = tst1 + dabs(h(l,l-1)) >*/
        tst2 = tst1 + (d__1 = h__[l + (l - 1) * h_dim1], abs(d__1));
/*<          if (tst2 .eq. tst1) go to 100 >*/
        if (tst2 == tst1) {
            goto L100;
        }
/*<    80 continue >*/
/* L80: */
    }
/*     .......... form shift .......... */
/*<   100 x = h(en,en) >*/
L100:
    x = h__[en + en * h_dim1];
/*<       if (l .eq. en) go to 270 >*/
    if (l == en) {
        goto L270;
    }
/*<       y = h(na,na) >*/
    y = h__[na + na * h_dim1];
/*<       w = h(en,na) * h(na,en) >*/
    w = h__[en + na * h_dim1] * h__[na + en * h_dim1];
/*<       if (l .eq. na) go to 280 >*/
    if (l == na) {
        goto L280;
    }
/*<       if (itn .eq. 0) go to 1000 >*/
    if (itn == 0) {
        goto L1000;
    }
/*<       if (its .ne. 10 .and. its .ne. 20) go to 130 >*/
    if (its != 10 && its != 20) {
        goto L130;
    }
/*     .......... form exceptional shift .......... */
/*<       t = t + x >*/
    t += x;

/*<       do 120 i = low, en >*/
    i__1 = en;
    for (i__ = *low; i__ <= i__1; ++i__) {
/*<   120 h(i,i) = h(i,i) - x >*/
/* L120: */
        h__[i__ + i__ * h_dim1] -= x;
    }

/*<       s = dabs(h(en,na)) + dabs(h(na,enm2)) >*/
    s = (d__1 = h__[en + na * h_dim1], abs(d__1)) + (d__2 = h__[na + enm2 * 
            h_dim1], abs(d__2));
/*<       x = 0.75d0 * s >*/
    x = s * .75;
/*<       y = x >*/
    y = x;
/*<       w = -0.4375d0 * s * s >*/
    w = s * -.4375 * s;
/*<   130 its = its + 1 >*/
L130:
    ++its;
/*<       itn = itn - 1 >*/
    --itn;
/*     .......... look for two consecutive small */
/*                sub-diagonal elements. */
/*                for m=en-2 step -1 until l do -- .......... */
/*<       do 140 mm = l, enm2 >*/
    i__1 = enm2;
    for (mm = l; mm <= i__1; ++mm) {
/*<          m = enm2 + l - mm >*/
        m = enm2 + l - mm;
/*<          zz = h(m,m) >*/
        zz = h__[m + m * h_dim1];
/*<          r = x - zz >*/
        r__ = x - zz;
/*<          s = y - zz >*/
        s = y - zz;
/*<          p = (r * s - w) / h(m+1,m) + h(m,m+1) >*/
        p = (r__ * s - w) / h__[m + 1 + m * h_dim1] + h__[m + (m + 1) * 
                h_dim1];
/*<          q = h(m+1,m+1) - zz - r - s >*/
        q = h__[m + 1 + (m + 1) * h_dim1] - zz - r__ - s;
/*<          r = h(m+2,m+1) >*/
        r__ = h__[m + 2 + (m + 1) * h_dim1];
/*<          s = dabs(p) + dabs(q) + dabs(r) >*/
        s = abs(p) + abs(q) + abs(r__);
/*<          p = p / s >*/
        p /= s;
/*<          q = q / s >*/
        q /= s;
/*<          r = r / s >*/
        r__ /= s;
/*<          if (m .eq. l) go to 150 >*/
        if (m == l) {
            goto L150;
        }
/*<          tst1 = dabs(p)*(dabs(h(m-1,m-1)) + dabs(zz) + dabs(h(m+1,m+1))) >*/
        tst1 = abs(p) * ((d__1 = h__[m - 1 + (m - 1) * h_dim1], abs(d__1)) + 
                abs(zz) + (d__2 = h__[m + 1 + (m + 1) * h_dim1], abs(d__2)));
/*<          tst2 = tst1 + dabs(h(m,m-1))*(dabs(q) + dabs(r)) >*/
        tst2 = tst1 + (d__1 = h__[m + (m - 1) * h_dim1], abs(d__1)) * (abs(q) 
                + abs(r__));
/*<          if (tst2 .eq. tst1) go to 150 >*/
        if (tst2 == tst1) {
            goto L150;
        }
/*<   140 continue >*/
/* L140: */
    }

/*<   150 mp2 = m + 2 >*/
L150:
    mp2 = m + 2;

/*<       do 160 i = mp2, en >*/
    i__1 = en;
    for (i__ = mp2; i__ <= i__1; ++i__) {
/*<          h(i,i-2) = 0.0d0 >*/
        h__[i__ + (i__ - 2) * h_dim1] = 0.;
/*<          if (i .eq. mp2) go to 160 >*/
        if (i__ == mp2) {
            goto L160;
        }
/*<          h(i,i-3) = 0.0d0 >*/
        h__[i__ + (i__ - 3) * h_dim1] = 0.;
/*<   160 continue >*/
L160:
        ;
    }
/*     .......... double qr step involving rows l to en and */
/*                columns m to en .......... */
/*<       do 260 k = m, na >*/
    i__1 = na;
    for (k = m; k <= i__1; ++k) {
/*<          notlas = k .ne. na >*/
        notlas = k != na;
/*<          if (k .eq. m) go to 170 >*/
        if (k == m) {
            goto L170;
        }
/*<          p = h(k,k-1) >*/
        p = h__[k + (k - 1) * h_dim1];
/*<          q = h(k+1,k-1) >*/
        q = h__[k + 1 + (k - 1) * h_dim1];
/*<          r = 0.0d0 >*/
        r__ = 0.;
/*<          if (notlas) r = h(k+2,k-1) >*/
        if (notlas) {
            r__ = h__[k + 2 + (k - 1) * h_dim1];
        }
/*<          x = dabs(p) + dabs(q) + dabs(r) >*/
        x = abs(p) + abs(q) + abs(r__);
/*<          if (x .eq. 0.0d0) go to 260 >*/
        if (x == 0.) {
            goto L260;
        }
/*<          p = p / x >*/
        p /= x;
/*<          q = q / x >*/
        q /= x;
/*<          r = r / x >*/
        r__ /= x;
/*<   170    s = dsign(dsqrt(p*p+q*q+r*r),p) >*/
L170:
        d__1 = sqrt(p * p + q * q + r__ * r__);
        s = d_sign(&d__1, &p);
/*<          if (k .eq. m) go to 180 >*/
        if (k == m) {
            goto L180;
        }
/*<          h(k,k-1) = -s * x >*/
        h__[k + (k - 1) * h_dim1] = -s * x;
/*<          go to 190 >*/
        goto L190;
/*<   180    if (l .ne. m) h(k,k-1) = -h(k,k-1) >*/
L180:
        if (l != m) {
            h__[k + (k - 1) * h_dim1] = -h__[k + (k - 1) * h_dim1];
        }
/*<   190    p = p + s >*/
L190:
        p += s;
/*<          x = p / s >*/
        x = p / s;
/*<          y = q / s >*/
        y = q / s;
/*<          zz = r / s >*/
        zz = r__ / s;
/*<          q = q / p >*/
        q /= p;
/*<          r = r / p >*/
        r__ /= p;
/*<          if (notlas) go to 225 >*/
        if (notlas) {
            goto L225;
        }
/*     .......... row modification .......... */
/*<          do 200 j = k, EN >*/
        i__2 = en;
        for (j = k; j <= i__2; ++j) {
/*<             p = h(k,j) + q * h(k+1,j) >*/
            p = h__[k + j * h_dim1] + q * h__[k + 1 + j * h_dim1];
/*<             h(k,j) = h(k,j) - p * x >*/
            h__[k + j * h_dim1] -= p * x;
/*<             h(k+1,j) = h(k+1,j) - p * y >*/
            h__[k + 1 + j * h_dim1] -= p * y;
/*<   200    continue >*/
/* L200: */
        }

/*<          j = min0(en,k+3) >*/
/* Computing MIN */
        i__2 = en, i__3 = k + 3;
        j = min(i__2,i__3);
/*     .......... column modification .......... */
/*<          do 210 i = L, j >*/
        i__2 = j;
        for (i__ = l; i__ <= i__2; ++i__) {
/*<             p = x * h(i,k) + y * h(i,k+1) >*/
            p = x * h__[i__ + k * h_dim1] + y * h__[i__ + (k + 1) * h_dim1];
/*<             h(i,k) = h(i,k) - p >*/
            h__[i__ + k * h_dim1] -= p;
/*<             h(i,k+1) = h(i,k+1) - p * q >*/
            h__[i__ + (k + 1) * h_dim1] -= p * q;
/*<   210    continue >*/
/* L210: */
        }
/*<          go to 255 >*/
        goto L255;
/*<   225    continue >*/
L225:
/*     .......... row modification .......... */
/*<          do 230 j = k, EN >*/
        i__2 = en;
        for (j = k; j <= i__2; ++j) {
/*<             p = h(k,j) + q * h(k+1,j) + r * h(k+2,j) >*/
            p = h__[k + j * h_dim1] + q * h__[k + 1 + j * h_dim1] + r__ * h__[
                    k + 2 + j * h_dim1];
/*<             h(k,j) = h(k,j) - p * x >*/
            h__[k + j * h_dim1] -= p * x;
/*<             h(k+1,j) = h(k+1,j) - p * y >*/
            h__[k + 1 + j * h_dim1] -= p * y;
/*<             h(k+2,j) = h(k+2,j) - p * zz >*/
            h__[k + 2 + j * h_dim1] -= p * zz;
/*<   230    continue >*/
/* L230: */
        }

/*<          j = min0(en,k+3) >*/
/* Computing MIN */
        i__2 = en, i__3 = k + 3;
        j = min(i__2,i__3);
/*     .......... column modification .......... */
/*<          do 240 i = L, j >*/
        i__2 = j;
        for (i__ = l; i__ <= i__2; ++i__) {
/*<             p = x * h(i,k) + y * h(i,k+1) + zz * h(i,k+2) >*/
            p = x * h__[i__ + k * h_dim1] + y * h__[i__ + (k + 1) * h_dim1] + 
                    zz * h__[i__ + (k + 2) * h_dim1];
/*<             h(i,k) = h(i,k) - p >*/
            h__[i__ + k * h_dim1] -= p;
/*<             h(i,k+1) = h(i,k+1) - p * q >*/
            h__[i__ + (k + 1) * h_dim1] -= p * q;
/*<             h(i,k+2) = h(i,k+2) - p * r >*/
            h__[i__ + (k + 2) * h_dim1] -= p * r__;
/*<   240    continue >*/
/* L240: */
        }
/*<   255    continue >*/
L255:

/*<   260 continue >*/
L260:
        ;
    }

/*<       go to 70 >*/
    goto L70;
/*     .......... one root found .......... */
/*<   270 wr(en) = x + t >*/
L270:
    wr[en] = x + t;
/*<       wi(en) = 0.0d0 >*/
    wi[en] = 0.;
/*<       en = na >*/
    en = na;
/*<       go to 60 >*/
    goto L60;
/*     .......... two roots found .......... */
/*<   280 p = (y - x) / 2.0d0 >*/
L280:
    p = (y - x) / 2.;
/*<       q = p * p + w >*/
    q = p * p + w;
/*<       zz = dsqrt(dabs(q)) >*/
    zz = sqrt((abs(q)));
/*<       x = x + t >*/
    x += t;
/*<       if (q .lt. 0.0d0) go to 320 >*/
    if (q < 0.) {
        goto L320;
    }
/*     .......... real pair .......... */
/*<       zz = p + dsign(zz,p) >*/
    zz = p + d_sign(&zz, &p);
/*<       wr(na) = x + zz >*/
    wr[na] = x + zz;
/*<       wr(en) = wr(na) >*/
    wr[en] = wr[na];
/*<       if (zz .ne. 0.0d0) wr(en) = x - w / zz >*/
    if (zz != 0.) {
        wr[en] = x - w / zz;
    }
/*<       wi(na) = 0.0d0 >*/
    wi[na] = 0.;
/*<       wi(en) = 0.0d0 >*/
    wi[en] = 0.;
/*<       go to 330 >*/
    goto L330;
/*     .......... complex pair .......... */
/*<   320 wr(na) = x + p >*/
L320:
    wr[na] = x + p;
/*<       wr(en) = x + p >*/
    wr[en] = x + p;
/*<       wi(na) = zz >*/
    wi[na] = zz;
/*<       wi(en) = -zz >*/
    wi[en] = -zz;
/*<   330 en = enm2 >*/
L330:
    en = enm2;
/*<       go to 60 >*/
    goto L60;
/*     .......... set error -- all eigenvalues have not */
/*                converged after 30*n iterations .......... */
/*<  1000 ierr = en >*/
L1000:
    *ierr = en;
/*<  1001 return >*/
L1001:
    return 0;
/*<       end >*/
} /* hqr_ */

#ifdef __cplusplus
        }
#endif