1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
subroutine hqr(nm,n,low,igh,h,wr,wi,ierr)
C RESTORED CORRECT INDICES OF LOOPS (200,210,230,240). (9/29/89 BSG)
c
integer i,j,k,l,m,n,en,ll,mm,na,nm,igh,itn,its,low,mp2,enm2,ierr
double precision h(nm,n),wr(n),wi(n)
double precision p,q,r,s,t,w,x,y,zz,norm,tst1,tst2
logical notlas
c
c this subroutine is a translation of the algol procedure hqr,
c num. math. 14, 219-231(1970) by martin, peters, and wilkinson.
c handbook for auto. comp., vol.ii-linear algebra, 359-371(1971).
c
c this subroutine finds the eigenvalues of a real
c upper hessenberg matrix by the qr method.
c
c on input
c
c nm must be set to the row dimension of two-dimensional
c array parameters as declared in the calling program
c dimension statement.
c
c n is the order of the matrix.
c
c low and igh are integers determined by the balancing
c subroutine balanc. if balanc has not been used,
c set low=1, igh=n.
c
c h contains the upper hessenberg matrix. information about
c the transformations used in the reduction to hessenberg
c form by elmhes or orthes, if performed, is stored
c in the remaining triangle under the hessenberg matrix.
c
c on output
c
c h has been destroyed. therefore, it must be saved
c before calling hqr if subsequent calculation and
c back transformation of eigenvectors is to be performed.
c
c wr and wi contain the real and imaginary parts,
c respectively, of the eigenvalues. the eigenvalues
c are unordered except that complex conjugate pairs
c of values appear consecutively with the eigenvalue
c having the positive imaginary part first. if an
c error exit is made, the eigenvalues should be correct
c for indices ierr+1,...,n.
c
c ierr is set to
c zero for normal return,
c j if the limit of 30*n iterations is exhausted
c while the j-th eigenvalue is being sought.
c
c questions and comments should be directed to burton s. garbow,
c mathematics and computer science div, argonne national laboratory
c
c this version dated september 1989.
c
c ------------------------------------------------------------------
c
ierr = 0
norm = 0.0d0
k = 1
c .......... store roots isolated by balanc
c and compute matrix norm ..........
do 50 i = 1, n
c
do 40 j = k, n
40 norm = norm + dabs(h(i,j))
c
k = i
if (i .ge. low .and. i .le. igh) go to 50
wr(i) = h(i,i)
wi(i) = 0.0d0
50 continue
c
en = igh
t = 0.0d0
itn = 30*n
c .......... search for next eigenvalues ..........
60 if (en .lt. low) go to 1001
its = 0
na = en - 1
enm2 = na - 1
c .......... look for single small sub-diagonal element
c for l=en step -1 until low do -- ..........
70 do 80 ll = low, en
l = en + low - ll
if (l .eq. low) go to 100
s = dabs(h(l-1,l-1)) + dabs(h(l,l))
if (s .eq. 0.0d0) s = norm
tst1 = s
tst2 = tst1 + dabs(h(l,l-1))
if (tst2 .eq. tst1) go to 100
80 continue
c .......... form shift ..........
100 x = h(en,en)
if (l .eq. en) go to 270
y = h(na,na)
w = h(en,na) * h(na,en)
if (l .eq. na) go to 280
if (itn .eq. 0) go to 1000
if (its .ne. 10 .and. its .ne. 20) go to 130
c .......... form exceptional shift ..........
t = t + x
c
do 120 i = low, en
120 h(i,i) = h(i,i) - x
c
s = dabs(h(en,na)) + dabs(h(na,enm2))
x = 0.75d0 * s
y = x
w = -0.4375d0 * s * s
130 its = its + 1
itn = itn - 1
c .......... look for two consecutive small
c sub-diagonal elements.
c for m=en-2 step -1 until l do -- ..........
do 140 mm = l, enm2
m = enm2 + l - mm
zz = h(m,m)
r = x - zz
s = y - zz
p = (r * s - w) / h(m+1,m) + h(m,m+1)
q = h(m+1,m+1) - zz - r - s
r = h(m+2,m+1)
s = dabs(p) + dabs(q) + dabs(r)
p = p / s
q = q / s
r = r / s
if (m .eq. l) go to 150
tst1 = dabs(p)*(dabs(h(m-1,m-1)) + dabs(zz) + dabs(h(m+1,m+1)))
tst2 = tst1 + dabs(h(m,m-1))*(dabs(q) + dabs(r))
if (tst2 .eq. tst1) go to 150
140 continue
c
150 mp2 = m + 2
c
do 160 i = mp2, en
h(i,i-2) = 0.0d0
if (i .eq. mp2) go to 160
h(i,i-3) = 0.0d0
160 continue
c .......... double qr step involving rows l to en and
c columns m to en ..........
do 260 k = m, na
notlas = k .ne. na
if (k .eq. m) go to 170
p = h(k,k-1)
q = h(k+1,k-1)
r = 0.0d0
if (notlas) r = h(k+2,k-1)
x = dabs(p) + dabs(q) + dabs(r)
if (x .eq. 0.0d0) go to 260
p = p / x
q = q / x
r = r / x
170 s = dsign(dsqrt(p*p+q*q+r*r),p)
if (k .eq. m) go to 180
h(k,k-1) = -s * x
go to 190
180 if (l .ne. m) h(k,k-1) = -h(k,k-1)
190 p = p + s
x = p / s
y = q / s
zz = r / s
q = q / p
r = r / p
if (notlas) go to 225
c .......... row modification ..........
do 200 j = k, EN
p = h(k,j) + q * h(k+1,j)
h(k,j) = h(k,j) - p * x
h(k+1,j) = h(k+1,j) - p * y
200 continue
c
j = min0(en,k+3)
c .......... column modification ..........
do 210 i = L, j
p = x * h(i,k) + y * h(i,k+1)
h(i,k) = h(i,k) - p
h(i,k+1) = h(i,k+1) - p * q
210 continue
go to 255
225 continue
c .......... row modification ..........
do 230 j = k, EN
p = h(k,j) + q * h(k+1,j) + r * h(k+2,j)
h(k,j) = h(k,j) - p * x
h(k+1,j) = h(k+1,j) - p * y
h(k+2,j) = h(k+2,j) - p * zz
230 continue
c
j = min0(en,k+3)
c .......... column modification ..........
do 240 i = L, j
p = x * h(i,k) + y * h(i,k+1) + zz * h(i,k+2)
h(i,k) = h(i,k) - p
h(i,k+1) = h(i,k+1) - p * q
h(i,k+2) = h(i,k+2) - p * r
240 continue
255 continue
c
260 continue
c
go to 70
c .......... one root found ..........
270 wr(en) = x + t
wi(en) = 0.0d0
en = na
go to 60
c .......... two roots found ..........
280 p = (y - x) / 2.0d0
q = p * p + w
zz = dsqrt(dabs(q))
x = x + t
if (q .lt. 0.0d0) go to 320
c .......... real pair ..........
zz = p + dsign(zz,p)
wr(na) = x + zz
wr(en) = wr(na)
if (zz .ne. 0.0d0) wr(en) = x - w / zz
wi(na) = 0.0d0
wi(en) = 0.0d0
go to 330
c .......... complex pair ..........
320 wr(na) = x + p
wr(en) = x + p
wi(na) = zz
wi(en) = -zz
330 en = enm2
go to 60
c .......... set error -- all eigenvalues have not
c converged after 30*n iterations ..........
1000 ierr = en
1001 return
end
|