File: hqr.f

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (235 lines) | stat: -rw-r--r-- 7,252 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
      subroutine hqr(nm,n,low,igh,h,wr,wi,ierr)
C  RESTORED CORRECT INDICES OF LOOPS (200,210,230,240). (9/29/89 BSG)
c
      integer i,j,k,l,m,n,en,ll,mm,na,nm,igh,itn,its,low,mp2,enm2,ierr
      double precision h(nm,n),wr(n),wi(n)
      double precision p,q,r,s,t,w,x,y,zz,norm,tst1,tst2
      logical notlas
c
c     this subroutine is a translation of the algol procedure hqr,
c     num. math. 14, 219-231(1970) by martin, peters, and wilkinson.
c     handbook for auto. comp., vol.ii-linear algebra, 359-371(1971).
c
c     this subroutine finds the eigenvalues of a real
c     upper hessenberg matrix by the qr method.
c
c     on input
c
c        nm must be set to the row dimension of two-dimensional
c          array parameters as declared in the calling program
c          dimension statement.
c
c        n is the order of the matrix.
c
c        low and igh are integers determined by the balancing
c          subroutine  balanc.  if  balanc  has not been used,
c          set low=1, igh=n.
c
c        h contains the upper hessenberg matrix.  information about
c          the transformations used in the reduction to hessenberg
c          form by  elmhes  or  orthes, if performed, is stored
c          in the remaining triangle under the hessenberg matrix.
c
c     on output
c
c        h has been destroyed.  therefore, it must be saved
c          before calling  hqr  if subsequent calculation and
c          back transformation of eigenvectors is to be performed.
c
c        wr and wi contain the real and imaginary parts,
c          respectively, of the eigenvalues.  the eigenvalues
c          are unordered except that complex conjugate pairs
c          of values appear consecutively with the eigenvalue
c          having the positive imaginary part first.  if an
c          error exit is made, the eigenvalues should be correct
c          for indices ierr+1,...,n.
c
c        ierr is set to
c          zero       for normal return,
c          j          if the limit of 30*n iterations is exhausted
c                     while the j-th eigenvalue is being sought.
c
c     questions and comments should be directed to burton s. garbow,
c     mathematics and computer science div, argonne national laboratory
c
c     this version dated september 1989.
c
c     ------------------------------------------------------------------
c
      ierr = 0
      norm = 0.0d0
      k = 1
c     .......... store roots isolated by balanc
c                and compute matrix norm ..........
      do 50 i = 1, n
c
         do 40 j = k, n
   40    norm = norm + dabs(h(i,j))
c
         k = i
         if (i .ge. low .and. i .le. igh) go to 50
         wr(i) = h(i,i)
         wi(i) = 0.0d0
   50 continue
c
      en = igh
      t = 0.0d0
      itn = 30*n
c     .......... search for next eigenvalues ..........
   60 if (en .lt. low) go to 1001
      its = 0
      na = en - 1
      enm2 = na - 1
c     .......... look for single small sub-diagonal element
c                for l=en step -1 until low do -- ..........
   70 do 80 ll = low, en
         l = en + low - ll
         if (l .eq. low) go to 100
         s = dabs(h(l-1,l-1)) + dabs(h(l,l))
         if (s .eq. 0.0d0) s = norm
         tst1 = s
         tst2 = tst1 + dabs(h(l,l-1))
         if (tst2 .eq. tst1) go to 100
   80 continue
c     .......... form shift ..........
  100 x = h(en,en)
      if (l .eq. en) go to 270
      y = h(na,na)
      w = h(en,na) * h(na,en)
      if (l .eq. na) go to 280
      if (itn .eq. 0) go to 1000
      if (its .ne. 10 .and. its .ne. 20) go to 130
c     .......... form exceptional shift ..........
      t = t + x
c
      do 120 i = low, en
  120 h(i,i) = h(i,i) - x
c
      s = dabs(h(en,na)) + dabs(h(na,enm2))
      x = 0.75d0 * s
      y = x
      w = -0.4375d0 * s * s
  130 its = its + 1
      itn = itn - 1
c     .......... look for two consecutive small
c                sub-diagonal elements.
c                for m=en-2 step -1 until l do -- ..........
      do 140 mm = l, enm2
         m = enm2 + l - mm
         zz = h(m,m)
         r = x - zz
         s = y - zz
         p = (r * s - w) / h(m+1,m) + h(m,m+1)
         q = h(m+1,m+1) - zz - r - s
         r = h(m+2,m+1)
         s = dabs(p) + dabs(q) + dabs(r)
         p = p / s
         q = q / s
         r = r / s
         if (m .eq. l) go to 150
         tst1 = dabs(p)*(dabs(h(m-1,m-1)) + dabs(zz) + dabs(h(m+1,m+1)))
         tst2 = tst1 + dabs(h(m,m-1))*(dabs(q) + dabs(r))
         if (tst2 .eq. tst1) go to 150
  140 continue
c
  150 mp2 = m + 2
c
      do 160 i = mp2, en
         h(i,i-2) = 0.0d0
         if (i .eq. mp2) go to 160
         h(i,i-3) = 0.0d0
  160 continue
c     .......... double qr step involving rows l to en and
c                columns m to en ..........
      do 260 k = m, na
         notlas = k .ne. na
         if (k .eq. m) go to 170
         p = h(k,k-1)
         q = h(k+1,k-1)
         r = 0.0d0
         if (notlas) r = h(k+2,k-1)
         x = dabs(p) + dabs(q) + dabs(r)
         if (x .eq. 0.0d0) go to 260
         p = p / x
         q = q / x
         r = r / x
  170    s = dsign(dsqrt(p*p+q*q+r*r),p)
         if (k .eq. m) go to 180
         h(k,k-1) = -s * x
         go to 190
  180    if (l .ne. m) h(k,k-1) = -h(k,k-1)
  190    p = p + s
         x = p / s
         y = q / s
         zz = r / s
         q = q / p
         r = r / p
         if (notlas) go to 225
c     .......... row modification ..........
         do 200 j = k, EN
            p = h(k,j) + q * h(k+1,j)
            h(k,j) = h(k,j) - p * x
            h(k+1,j) = h(k+1,j) - p * y
  200    continue
c
         j = min0(en,k+3)
c     .......... column modification ..........
         do 210 i = L, j
            p = x * h(i,k) + y * h(i,k+1)
            h(i,k) = h(i,k) - p
            h(i,k+1) = h(i,k+1) - p * q
  210    continue
         go to 255
  225    continue
c     .......... row modification ..........
         do 230 j = k, EN
            p = h(k,j) + q * h(k+1,j) + r * h(k+2,j)
            h(k,j) = h(k,j) - p * x
            h(k+1,j) = h(k+1,j) - p * y
            h(k+2,j) = h(k+2,j) - p * zz
  230    continue
c
         j = min0(en,k+3)
c     .......... column modification ..........
         do 240 i = L, j
            p = x * h(i,k) + y * h(i,k+1) + zz * h(i,k+2)
            h(i,k) = h(i,k) - p
            h(i,k+1) = h(i,k+1) - p * q
            h(i,k+2) = h(i,k+2) - p * r
  240    continue
  255    continue
c
  260 continue
c
      go to 70
c     .......... one root found ..........
  270 wr(en) = x + t
      wi(en) = 0.0d0
      en = na
      go to 60
c     .......... two roots found ..........
  280 p = (y - x) / 2.0d0
      q = p * p + w
      zz = dsqrt(dabs(q))
      x = x + t
      if (q .lt. 0.0d0) go to 320
c     .......... real pair ..........
      zz = p + dsign(zz,p)
      wr(na) = x + zz
      wr(en) = wr(na)
      if (zz .ne. 0.0d0) wr(en) = x - w / zz
      wi(na) = 0.0d0
      wi(en) = 0.0d0
      go to 330
c     .......... complex pair ..........
  320 wr(na) = x + p
      wr(en) = x + p
      wi(na) = zz
      wi(en) = -zz
  330 en = enm2
      go to 60
c     .......... set error -- all eigenvalues have not
c                converged after 30*n iterations ..........
 1000 ierr = en
 1001 return
      end