1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
/* eispack/reduc.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< subroutine reduc(nm,n,a,b,dl,ierr) >*/
/* Subroutine */ int reduc_(integer *nm, integer *n, doublereal *a,
doublereal *b, doublereal *dl, integer *ierr)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j, k;
doublereal x, y=0;
integer i1, j1, nn;
/*< integer i,j,k,n,i1,j1,nm,nn,ierr >*/
/*< double precision a(nm,n),b(nm,n),dl(n) >*/
/*< double precision x,y >*/
/* this subroutine is a translation of the algol procedure reduc1, */
/* num. math. 11, 99-110(1968) by martin and wilkinson. */
/* handbook for auto. comp., vol.ii-linear algebra, 303-314(1971). */
/* this subroutine reduces the generalized symmetric eigenproblem */
/* ax=(lambda)bx, where b is positive definite, to the standard */
/* symmetric eigenproblem using the cholesky factorization of b. */
/* on input */
/* nm must be set to the row dimension of two-dimensional */
/* array parameters as declared in the calling program */
/* dimension statement. */
/* n is the order of the matrices a and b. if the cholesky */
/* factor l of b is already available, n should be prefixed */
/* with a minus sign. */
/* a and b contain the real symmetric input matrices. only the */
/* full upper triangles of the matrices need be supplied. if */
/* n is negative, the strict lower triangle of b contains, */
/* instead, the strict lower triangle of its cholesky factor l. */
/* dl contains, if n is negative, the diagonal elements of l. */
/* on output */
/* a contains in its full lower triangle the full lower triangle */
/* of the symmetric matrix derived from the reduction to the */
/* standard form. the strict upper triangle of a is unaltered. */
/* b contains in its strict lower triangle the strict lower */
/* triangle of its cholesky factor l. the full upper */
/* triangle of b is unaltered. */
/* dl contains the diagonal elements of l. */
/* ierr is set to */
/* zero for normal return, */
/* 7*n+1 if b is not positive definite. */
/* questions and comments should be directed to burton s. garbow, */
/* mathematics and computer science div, argonne national laboratory */
/* this version dated august 1983. */
/* ------------------------------------------------------------------ */
/*< ierr = 0 >*/
/* Parameter adjustments */
--dl;
b_dim1 = *nm;
b_offset = 1 + b_dim1;
b -= b_offset;
a_dim1 = *nm;
a_offset = 1 + a_dim1;
a -= a_offset;
/* Function Body */
*ierr = 0;
/*< nn = iabs(n) >*/
nn = abs(*n);
/*< if (n .lt. 0) go to 100 >*/
if (*n < 0) {
goto L100;
}
/* .......... form l in the arrays b and dl .......... */
/*< do 80 i = 1, n >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< i1 = i - 1 >*/
i1 = i__ - 1;
/*< do 80 j = i, n >*/
i__2 = *n;
for (j = i__; j <= i__2; ++j) {
/*< x = b(i,j) >*/
x = b[i__ + j * b_dim1];
/*< if (i .eq. 1) go to 40 >*/
if (i__ == 1) {
goto L40;
}
/*< do 20 k = 1, i1 >*/
i__3 = i1;
for (k = 1; k <= i__3; ++k) {
/*< 20 x = x - b(i,k) * b(j,k) >*/
/* L20: */
x -= b[i__ + k * b_dim1] * b[j + k * b_dim1];
}
/*< 40 if (j .ne. i) go to 60 >*/
L40:
if (j != i__) {
goto L60;
}
/*< if (x .le. 0.0d0) go to 1000 >*/
if (x <= 0.) {
goto L1000;
}
/*< y = dsqrt(x) >*/
y = sqrt(x);
/*< dl(i) = y >*/
dl[i__] = y;
/*< go to 80 >*/
goto L80;
/*< 60 b(j,i) = x / y >*/
L60:
b[j + i__ * b_dim1] = x / y;
/*< 80 continue >*/
L80:
;
}
}
/* .......... form the transpose of the upper triangle of inv(l)*a */
/* in the lower triangle of the array a .......... */
/*< 100 do 200 i = 1, nn >*/
L100:
i__2 = nn;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< i1 = i - 1 >*/
i1 = i__ - 1;
/*< y = dl(i) >*/
y = dl[i__];
/*< do 200 j = i, nn >*/
i__1 = nn;
for (j = i__; j <= i__1; ++j) {
/*< x = a(i,j) >*/
x = a[i__ + j * a_dim1];
/*< if (i .eq. 1) go to 180 >*/
if (i__ == 1) {
goto L180;
}
/*< do 160 k = 1, i1 >*/
i__3 = i1;
for (k = 1; k <= i__3; ++k) {
/*< 160 x = x - b(i,k) * a(j,k) >*/
/* L160: */
x -= b[i__ + k * b_dim1] * a[j + k * a_dim1];
}
/*< 180 a(j,i) = x / y >*/
L180:
a[j + i__ * a_dim1] = x / y;
/*< 200 continue >*/
/* L200: */
}
}
/* .......... pre-multiply by inv(l) and overwrite .......... */
/*< do 300 j = 1, nn >*/
i__1 = nn;
for (j = 1; j <= i__1; ++j) {
/*< j1 = j - 1 >*/
j1 = j - 1;
/*< do 300 i = j, nn >*/
i__2 = nn;
for (i__ = j; i__ <= i__2; ++i__) {
/*< x = a(i,j) >*/
x = a[i__ + j * a_dim1];
/*< if (i .eq. j) go to 240 >*/
if (i__ == j) {
goto L240;
}
/*< i1 = i - 1 >*/
i1 = i__ - 1;
/*< do 220 k = j, i1 >*/
i__3 = i1;
for (k = j; k <= i__3; ++k) {
/*< 220 x = x - a(k,j) * b(i,k) >*/
/* L220: */
x -= a[k + j * a_dim1] * b[i__ + k * b_dim1];
}
/*< 240 if (j .eq. 1) go to 280 >*/
L240:
if (j == 1) {
goto L280;
}
/*< do 260 k = 1, j1 >*/
i__3 = j1;
for (k = 1; k <= i__3; ++k) {
/*< 260 x = x - a(j,k) * b(i,k) >*/
/* L260: */
x -= a[j + k * a_dim1] * b[i__ + k * b_dim1];
}
/*< 280 a(i,j) = x / dl(i) >*/
L280:
a[i__ + j * a_dim1] = x / dl[i__];
/*< 300 continue >*/
/* L300: */
}
}
/*< go to 1001 >*/
goto L1001;
/* .......... set error -- b is not positive definite .......... */
/*< 1000 ierr = 7 * n + 1 >*/
L1000:
*ierr = *n * 7 + 1;
/*< 1001 return >*/
L1001:
return 0;
/*< end >*/
} /* reduc_ */
#ifdef __cplusplus
}
#endif
|