1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
subroutine tred1(nm,n,a,d,e,e2)
c
integer i,j,k,l,n,ii,nm,jp1
double precision a(nm,n),d(n),e(n),e2(n)
double precision f,g,h,scale
c
c this subroutine is a translation of the algol procedure tred1,
c num. math. 11, 181-195(1968) by martin, reinsch, and wilkinson.
c handbook for auto. comp., vol.ii-linear algebra, 212-226(1971).
c
c this subroutine reduces a real symmetric matrix
c to a symmetric tridiagonal matrix using
c orthogonal similarity transformations.
c
c on input
c
c nm must be set to the row dimension of two-dimensional
c array parameters as declared in the calling program
c dimension statement.
c
c n is the order of the matrix.
c
c a contains the real symmetric input matrix. only the
c lower triangle of the matrix need be supplied.
c
c on output
c
c a contains information about the orthogonal trans-
c formations used in the reduction in its strict lower
c triangle. the full upper triangle of a is unaltered.
c
c d contains the diagonal elements of the tridiagonal matrix.
c
c e contains the subdiagonal elements of the tridiagonal
c matrix in its last n-1 positions. e(1) is set to zero.
c
c e2 contains the squares of the corresponding elements of e.
c e2 may coincide with e if the squares are not needed.
c
c questions and comments should be directed to burton s. garbow,
c mathematics and computer science div, argonne national laboratory
c
c this version dated august 1983.
c
c ------------------------------------------------------------------
c
do 100 i = 1, n
d(i) = a(n,i)
a(n,i) = a(i,i)
100 continue
c .......... for i=n step -1 until 1 do -- ..........
do 300 ii = 1, n
i = n + 1 - ii
l = i - 1
h = 0.0d0
scale = 0.0d0
if (l .lt. 1) go to 130
c .......... scale row (algol tol then not needed) ..........
do 120 k = 1, l
120 scale = scale + dabs(d(k))
c
if (scale .ne. 0.0d0) go to 140
c
do 125 j = 1, l
d(j) = a(l,j)
a(l,j) = a(i,j)
a(i,j) = 0.0d0
125 continue
c
130 e(i) = 0.0d0
e2(i) = 0.0d0
go to 300
c
140 do 150 k = 1, l
d(k) = d(k) / scale
h = h + d(k) * d(k)
150 continue
c
e2(i) = scale * scale * h
f = d(l)
g = -dsign(dsqrt(h),f)
e(i) = scale * g
h = h - f * g
d(l) = f - g
if (l .eq. 1) go to 285
c .......... form a*u ..........
do 170 j = 1, l
170 e(j) = 0.0d0
c
do 240 j = 1, l
f = d(j)
g = e(j) + a(j,j) * f
jp1 = j + 1
if (l .lt. jp1) go to 220
c
do 200 k = jp1, l
g = g + a(k,j) * d(k)
e(k) = e(k) + a(k,j) * f
200 continue
c
220 e(j) = g
240 continue
c .......... form p ..........
f = 0.0d0
c
do 245 j = 1, l
e(j) = e(j) / h
f = f + e(j) * d(j)
245 continue
c
h = f / (h + h)
c .......... form q ..........
do 250 j = 1, l
250 e(j) = e(j) - h * d(j)
c .......... form reduced a ..........
do 280 j = 1, l
f = d(j)
g = e(j)
c
do 260 k = j, l
260 a(k,j) = a(k,j) - f * e(k) - g * d(k)
c
280 continue
c
285 do 290 j = 1, l
f = d(j)
d(j) = a(l,j)
a(l,j) = a(i,j)
a(i,j) = f * scale
290 continue
c
300 continue
c
return
end
|