1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
|
/* lapack/complex16/zgebal.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
/*< SUBROUTINE ZGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO ) >*/
/* Subroutine */ int zgebal_(char *job, integer *n, doublecomplex *a, integer
*lda, integer *ilo, integer *ihi, doublereal *scale, integer *info,
ftnlen job_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublereal d__1, d__2;
/* Builtin functions */
double d_imag(doublecomplex *), z_abs(doublecomplex *);
/* Local variables */
doublereal c__, f, g;
integer i__, j, k, l, m;
doublereal r__, s, ca, ra;
integer ica, ira, iexc;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *);
doublereal sfmin1, sfmin2, sfmax1, sfmax2;
extern doublereal dlamch_(char *, ftnlen);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), zdscal_(
integer *, doublereal *, doublecomplex *, integer *);
extern integer izamax_(integer *, doublecomplex *, integer *);
logical noconv;
(void)job_len;
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* .. Scalar Arguments .. */
/*< CHARACTER JOB >*/
/*< INTEGER IHI, ILO, INFO, LDA, N >*/
/* .. */
/* .. Array Arguments .. */
/*< DOUBLE PRECISION SCALE( * ) >*/
/*< COMPLEX*16 A( LDA, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZGEBAL balances a general complex matrix A. This involves, first, */
/* permuting A by a similarity transformation to isolate eigenvalues */
/* in the first 1 to ILO-1 and last IHI+1 to N elements on the */
/* diagonal; and second, applying a diagonal similarity transformation */
/* to rows and columns ILO to IHI to make the rows and columns as */
/* close in norm as possible. Both steps are optional. */
/* Balancing may reduce the 1-norm of the matrix, and improve the */
/* accuracy of the computed eigenvalues and/or eigenvectors. */
/* Arguments */
/* ========= */
/* JOB (input) CHARACTER*1 */
/* Specifies the operations to be performed on A: */
/* = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0 */
/* for i = 1,...,N; */
/* = 'P': permute only; */
/* = 'S': scale only; */
/* = 'B': both permute and scale. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
/* On entry, the input matrix A. */
/* On exit, A is overwritten by the balanced matrix. */
/* If JOB = 'N', A is not referenced. */
/* See Further Details. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* ILO (output) INTEGER */
/* IHI (output) INTEGER */
/* ILO and IHI are set to integers such that on exit */
/* A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N. */
/* If JOB = 'N' or 'S', ILO = 1 and IHI = N. */
/* SCALE (output) DOUBLE PRECISION array, dimension (N) */
/* Details of the permutations and scaling factors applied to */
/* A. If P(j) is the index of the row and column interchanged */
/* with row and column j and D(j) is the scaling factor */
/* applied to row and column j, then */
/* SCALE(j) = P(j) for j = 1,...,ILO-1 */
/* = D(j) for j = ILO,...,IHI */
/* = P(j) for j = IHI+1,...,N. */
/* The order in which the interchanges are made is N to IHI+1, */
/* then 1 to ILO-1. */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* Further Details */
/* =============== */
/* The permutations consist of row and column interchanges which put */
/* the matrix in the form */
/* ( T1 X Y ) */
/* P A P = ( 0 B Z ) */
/* ( 0 0 T2 ) */
/* where T1 and T2 are upper triangular matrices whose eigenvalues lie */
/* along the diagonal. The column indices ILO and IHI mark the starting */
/* and ending columns of the submatrix B. Balancing consists of applying */
/* a diagonal similarity transformation inv(D) * B * D to make the */
/* 1-norms of each row of B and its corresponding column nearly equal. */
/* The output matrix is */
/* ( T1 X*D Y ) */
/* ( 0 inv(D)*B*D inv(D)*Z ). */
/* ( 0 0 T2 ) */
/* Information about the permutations P and the diagonal matrix D is */
/* returned in the vector SCALE. */
/* This subroutine is based on the EISPACK routine CBAL. */
/* Modified by Tzu-Yi Chen, Computer Science Division, University of */
/* California at Berkeley, USA */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ZERO, ONE >*/
/*< PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) >*/
/*< DOUBLE PRECISION SCLFAC >*/
/*< PARAMETER ( SCLFAC = 0.8D+1 ) >*/
/*< DOUBLE PRECISION FACTOR >*/
/*< PARAMETER ( FACTOR = 0.95D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL NOCONV >*/
/*< INTEGER I, ICA, IEXC, IRA, J, K, L, M >*/
/*< >*/
/*< COMPLEX*16 CDUM >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< INTEGER IZAMAX >*/
/*< DOUBLE PRECISION DLAMCH >*/
/*< EXTERNAL LSAME, IZAMAX, DLAMCH >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA, ZDSCAL, ZSWAP >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, DBLE, DIMAG, MAX, MIN >*/
/* .. */
/* .. Statement Functions .. */
/*< DOUBLE PRECISION CABS1 >*/
/* .. */
/* .. Statement Function definitions .. */
/*< CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) ) >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--scale;
/* Function Body */
*info = 0;
/*< >*/
if (! lsame_(job, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(job, "P", (
ftnlen)1, (ftnlen)1) && ! lsame_(job, "S", (ftnlen)1, (ftnlen)1)
&& ! lsame_(job, "B", (ftnlen)1, (ftnlen)1)) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( LDA.LT.MAX( 1, N ) ) THEN >*/
} else if (*lda < max(1,*n)) {
/*< INFO = -4 >*/
*info = -4;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'ZGEBAL', -INFO ) >*/
i__1 = -(*info);
xerbla_("ZGEBAL", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/*< K = 1 >*/
k = 1;
/*< L = N >*/
l = *n;
/*< >*/
if (*n == 0) {
goto L210;
}
/*< IF( LSAME( JOB, 'N' ) ) THEN >*/
if (lsame_(job, "N", (ftnlen)1, (ftnlen)1)) {
/*< DO 10 I = 1, N >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< SCALE( I ) = ONE >*/
scale[i__] = 1.;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< GO TO 210 >*/
goto L210;
/*< END IF >*/
}
/*< >*/
if (lsame_(job, "S", (ftnlen)1, (ftnlen)1)) {
goto L120;
}
/* Permutation to isolate eigenvalues if possible */
/*< GO TO 50 >*/
goto L50;
/* Row and column exchange. */
/*< 20 CONTINUE >*/
L20:
/*< SCALE( M ) = J >*/
scale[m] = (doublereal) j;
/*< >*/
if (j == m) {
goto L30;
}
/*< CALL ZSWAP( L, A( 1, J ), 1, A( 1, M ), 1 ) >*/
zswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
/*< CALL ZSWAP( N-K+1, A( J, K ), LDA, A( M, K ), LDA ) >*/
i__1 = *n - k + 1;
zswap_(&i__1, &a[j + k * a_dim1], lda, &a[m + k * a_dim1], lda);
/*< 30 CONTINUE >*/
L30:
/*< GO TO ( 40, 80 )IEXC >*/
switch (iexc) {
case 1: goto L40;
case 2: goto L80;
}
/* Search for rows isolating an eigenvalue and push them down. */
/*< 40 CONTINUE >*/
L40:
/*< >*/
if (l == 1) {
goto L210;
}
/*< L = L - 1 >*/
--l;
/*< 50 CONTINUE >*/
L50:
/*< DO 70 J = L, 1, -1 >*/
for (j = l; j >= 1; --j) {
/*< DO 60 I = 1, L >*/
i__1 = l;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< >*/
if (i__ == j) {
goto L60;
}
/*< >*/
i__2 = j + i__ * a_dim1;
if (a[i__2].r != 0. || d_imag(&a[j + i__ * a_dim1]) != 0.) {
goto L70;
}
/*< 60 CONTINUE >*/
L60:
;
}
/*< M = L >*/
m = l;
/*< IEXC = 1 >*/
iexc = 1;
/*< GO TO 20 >*/
goto L20;
/*< 70 CONTINUE >*/
L70:
;
}
/*< GO TO 90 >*/
goto L90;
/* Search for columns isolating an eigenvalue and push them left. */
/*< 80 CONTINUE >*/
L80:
/*< K = K + 1 >*/
++k;
/*< 90 CONTINUE >*/
L90:
/*< DO 110 J = K, L >*/
i__1 = l;
for (j = k; j <= i__1; ++j) {
/*< DO 100 I = K, L >*/
i__2 = l;
for (i__ = k; i__ <= i__2; ++i__) {
/*< >*/
if (i__ == j) {
goto L100;
}
/*< >*/
i__3 = i__ + j * a_dim1;
if (a[i__3].r != 0. || d_imag(&a[i__ + j * a_dim1]) != 0.) {
goto L110;
}
/*< 100 CONTINUE >*/
L100:
;
}
/*< M = K >*/
m = k;
/*< IEXC = 2 >*/
iexc = 2;
/*< GO TO 20 >*/
goto L20;
/*< 110 CONTINUE >*/
L110:
;
}
/*< 120 CONTINUE >*/
L120:
/*< DO 130 I = K, L >*/
i__1 = l;
for (i__ = k; i__ <= i__1; ++i__) {
/*< SCALE( I ) = ONE >*/
scale[i__] = 1.;
/*< 130 CONTINUE >*/
/* L130: */
}
/*< >*/
if (lsame_(job, "P", (ftnlen)1, (ftnlen)1)) {
goto L210;
}
/* Balance the submatrix in rows K to L. */
/* Iterative loop for norm reduction */
/*< SFMIN1 = DLAMCH( 'S' ) / DLAMCH( 'P' ) >*/
sfmin1 = dlamch_("S", (ftnlen)1) / dlamch_("P", (ftnlen)1);
/*< SFMAX1 = ONE / SFMIN1 >*/
sfmax1 = 1. / sfmin1;
/*< SFMIN2 = SFMIN1*SCLFAC >*/
sfmin2 = sfmin1 * 8.;
/*< SFMAX2 = ONE / SFMIN2 >*/
sfmax2 = 1. / sfmin2;
/*< 140 CONTINUE >*/
L140:
/*< NOCONV = .FALSE. >*/
noconv = FALSE_;
/*< DO 200 I = K, L >*/
i__1 = l;
for (i__ = k; i__ <= i__1; ++i__) {
/*< C = ZERO >*/
c__ = 0.;
/*< R = ZERO >*/
r__ = 0.;
/*< DO 150 J = K, L >*/
i__2 = l;
for (j = k; j <= i__2; ++j) {
/*< >*/
if (j == i__) {
goto L150;
}
/*< C = C + CABS1( A( J, I ) ) >*/
i__3 = j + i__ * a_dim1;
c__ += (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[j + i__ *
a_dim1]), abs(d__2));
/*< R = R + CABS1( A( I, J ) ) >*/
i__3 = i__ + j * a_dim1;
r__ += (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + j *
a_dim1]), abs(d__2));
/*< 150 CONTINUE >*/
L150:
;
}
/*< ICA = IZAMAX( L, A( 1, I ), 1 ) >*/
ica = izamax_(&l, &a[i__ * a_dim1 + 1], &c__1);
/*< CA = ABS( A( ICA, I ) ) >*/
ca = z_abs(&a[ica + i__ * a_dim1]);
/*< IRA = IZAMAX( N-K+1, A( I, K ), LDA ) >*/
i__2 = *n - k + 1;
ira = izamax_(&i__2, &a[i__ + k * a_dim1], lda);
/*< RA = ABS( A( I, IRA+K-1 ) ) >*/
ra = z_abs(&a[i__ + (ira + k - 1) * a_dim1]);
/* Guard against zero C or R due to underflow. */
/*< >*/
if (c__ == 0. || r__ == 0.) {
goto L200;
}
/*< G = R / SCLFAC >*/
g = r__ / 8.;
/*< F = ONE >*/
f = 1.;
/*< S = C + R >*/
s = c__ + r__;
/*< 160 CONTINUE >*/
L160:
/*< >*/
/* Computing MAX */
d__1 = max(f,c__);
/* Computing MIN */
d__2 = min(r__,g);
if (c__ >= g || max(d__1,ca) >= sfmax2 || min(d__2,ra) <= sfmin2) {
goto L170;
}
/*< F = F*SCLFAC >*/
f *= 8.;
/*< C = C*SCLFAC >*/
c__ *= 8.;
/*< CA = CA*SCLFAC >*/
ca *= 8.;
/*< R = R / SCLFAC >*/
r__ /= 8.;
/*< G = G / SCLFAC >*/
g /= 8.;
/*< RA = RA / SCLFAC >*/
ra /= 8.;
/*< GO TO 160 >*/
goto L160;
/*< 170 CONTINUE >*/
L170:
/*< G = C / SCLFAC >*/
g = c__ / 8.;
/*< 180 CONTINUE >*/
L180:
/*< >*/
/* Computing MIN */
d__1 = min(f,c__), d__1 = min(d__1,g);
if (g < r__ || max(r__,ra) >= sfmax2 || min(d__1,ca) <= sfmin2) {
goto L190;
}
/*< F = F / SCLFAC >*/
f /= 8.;
/*< C = C / SCLFAC >*/
c__ /= 8.;
/*< G = G / SCLFAC >*/
g /= 8.;
/*< CA = CA / SCLFAC >*/
ca /= 8.;
/*< R = R*SCLFAC >*/
r__ *= 8.;
/*< RA = RA*SCLFAC >*/
ra *= 8.;
/*< GO TO 180 >*/
goto L180;
/* Now balance. */
/*< 190 CONTINUE >*/
L190:
/*< >*/
if (c__ + r__ >= s * .95) {
goto L200;
}
/*< IF( F.LT.ONE .AND. SCALE( I ).LT.ONE ) THEN >*/
if (f < 1. && scale[i__] < 1.) {
/*< >*/
if (f * scale[i__] <= sfmin1) {
goto L200;
}
/*< END IF >*/
}
/*< IF( F.GT.ONE .AND. SCALE( I ).GT.ONE ) THEN >*/
if (f > 1. && scale[i__] > 1.) {
/*< >*/
if (scale[i__] >= sfmax1 / f) {
goto L200;
}
/*< END IF >*/
}
/*< G = ONE / F >*/
g = 1. / f;
/*< SCALE( I ) = SCALE( I )*F >*/
scale[i__] *= f;
/*< NOCONV = .TRUE. >*/
noconv = TRUE_;
/*< CALL ZDSCAL( N-K+1, G, A( I, K ), LDA ) >*/
i__2 = *n - k + 1;
zdscal_(&i__2, &g, &a[i__ + k * a_dim1], lda);
/*< CALL ZDSCAL( L, F, A( 1, I ), 1 ) >*/
zdscal_(&l, &f, &a[i__ * a_dim1 + 1], &c__1);
/*< 200 CONTINUE >*/
L200:
;
}
/*< >*/
if (noconv) {
goto L140;
}
/*< 210 CONTINUE >*/
L210:
/*< ILO = K >*/
*ilo = k;
/*< IHI = L >*/
*ihi = l;
/*< RETURN >*/
return 0;
/* End of ZGEBAL */
/*< END >*/
} /* zgebal_ */
#ifdef __cplusplus
}
#endif
|