1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
/* lapack/complex16/zgehd2.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
/*< SUBROUTINE ZGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO ) >*/
/* Subroutine */ int zgehd2_(integer *n, integer *ilo, integer *ihi,
doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublecomplex z__1;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__;
doublecomplex alpha;
extern /* Subroutine */ int zlarf_(char *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *, doublecomplex *, ftnlen), xerbla_(char *, integer *,
ftnlen), zlarfg_(integer *, doublecomplex *, doublecomplex *,
integer *, doublecomplex *);
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* September 30, 1994 */
/* .. Scalar Arguments .. */
/*< INTEGER IHI, ILO, INFO, LDA, N >*/
/* .. */
/* .. Array Arguments .. */
/*< COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZGEHD2 reduces a complex general matrix A to upper Hessenberg form H */
/* by a unitary similarity transformation: Q' * A * Q = H . */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* ILO (input) INTEGER */
/* IHI (input) INTEGER */
/* It is assumed that A is already upper triangular in rows */
/* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
/* set by a previous call to ZGEBAL; otherwise they should be */
/* set to 1 and N respectively. See Further Details. */
/* 1 <= ILO <= IHI <= max(1,N). */
/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
/* On entry, the n by n general matrix to be reduced. */
/* On exit, the upper triangle and the first subdiagonal of A */
/* are overwritten with the upper Hessenberg matrix H, and the */
/* elements below the first subdiagonal, with the array TAU, */
/* represent the unitary matrix Q as a product of elementary */
/* reflectors. See Further Details. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* TAU (output) COMPLEX*16 array, dimension (N-1) */
/* The scalar factors of the elementary reflectors (see Further */
/* Details). */
/* WORK (workspace) COMPLEX*16 array, dimension (N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* Further Details */
/* =============== */
/* The matrix Q is represented as a product of (ihi-ilo) elementary */
/* reflectors */
/* Q = H(ilo) H(ilo+1) . . . H(ihi-1). */
/* Each H(i) has the form */
/* H(i) = I - tau * v * v' */
/* where tau is a complex scalar, and v is a complex vector with */
/* v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on */
/* exit in A(i+2:ihi,i), and tau in TAU(i). */
/* The contents of A are illustrated by the following example, with */
/* n = 7, ilo = 2 and ihi = 6: */
/* on entry, on exit, */
/* ( a a a a a a a ) ( a a h h h h a ) */
/* ( a a a a a a ) ( a h h h h a ) */
/* ( a a a a a a ) ( h h h h h h ) */
/* ( a a a a a a ) ( v2 h h h h h ) */
/* ( a a a a a a ) ( v2 v3 h h h h ) */
/* ( a a a a a a ) ( v2 v3 v4 h h h ) */
/* ( a ) ( a ) */
/* where a denotes an element of the original matrix A, h denotes a */
/* modified element of the upper Hessenberg matrix H, and vi denotes an */
/* element of the vector defining H(i). */
/* ===================================================================== */
/* .. Parameters .. */
/*< COMPLEX*16 ONE >*/
/*< PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) >*/
/* .. */
/* .. Local Scalars .. */
/*< INTEGER I >*/
/*< COMPLEX*16 ALPHA >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA, ZLARF, ZLARFG >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC DCONJG, MAX, MIN >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
/*< IF( N.LT.0 ) THEN >*/
if (*n < 0) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN >*/
} else if (*ilo < 1 || *ilo > max(1,*n)) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN >*/
} else if (*ihi < min(*ilo,*n) || *ihi > *n) {
/*< INFO = -3 >*/
*info = -3;
/*< ELSE IF( LDA.LT.MAX( 1, N ) ) THEN >*/
} else if (*lda < max(1,*n)) {
/*< INFO = -5 >*/
*info = -5;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'ZGEHD2', -INFO ) >*/
i__1 = -(*info);
xerbla_("ZGEHD2", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/*< DO 10 I = ILO, IHI - 1 >*/
i__1 = *ihi - 1;
for (i__ = *ilo; i__ <= i__1; ++i__) {
/* Compute elementary reflector H(i) to annihilate A(i+2:ihi,i) */
/*< ALPHA = A( I+1, I ) >*/
i__2 = i__ + 1 + i__ * a_dim1;
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
/*< CALL ZLARFG( IHI-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAU( I ) ) >*/
i__2 = *ihi - i__;
/* Computing MIN */
i__3 = i__ + 2;
zlarfg_(&i__2, &alpha, &a[min(i__3,*n) + i__ * a_dim1], &c__1, &tau[
i__]);
/*< A( I+1, I ) = ONE >*/
i__2 = i__ + 1 + i__ * a_dim1;
a[i__2].r = 1., a[i__2].i = 0.;
/* Apply H(i) to A(1:ihi,i+1:ihi) from the right */
/*< >*/
i__2 = *ihi - i__;
zlarf_("Right", ihi, &i__2, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
i__], &a[(i__ + 1) * a_dim1 + 1], lda, &work[1], (ftnlen)5);
/* Apply H(i)' to A(i+1:ihi,i+1:n) from the left */
/*< >*/
i__2 = *ihi - i__;
i__3 = *n - i__;
d_cnjg(&z__1, &tau[i__]);
zlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &c__1, &z__1,
&a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1], (ftnlen)4);
/*< A( I+1, I ) = ALPHA >*/
i__2 = i__ + 1 + i__ * a_dim1;
a[i__2].r = alpha.r, a[i__2].i = alpha.i;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< RETURN >*/
return 0;
/* End of ZGEHD2 */
/*< END >*/
} /* zgehd2_ */
#ifdef __cplusplus
}
#endif
|