File: zgehd2.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (240 lines) | stat: -rw-r--r-- 8,008 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/* lapack/complex16/zgehd2.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__1 = 1;

/*<       SUBROUTINE ZGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO ) >*/
/* Subroutine */ int zgehd2_(integer *n, integer *ilo, integer *ihi, 
        doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
        work, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    doublecomplex z__1;

    /* Builtin functions */
    void d_cnjg(doublecomplex *, doublecomplex *);

    /* Local variables */
    integer i__;
    doublecomplex alpha;
    extern /* Subroutine */ int zlarf_(char *, integer *, integer *, 
            doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
            integer *, doublecomplex *, ftnlen), xerbla_(char *, integer *, 
            ftnlen), zlarfg_(integer *, doublecomplex *, doublecomplex *, 
            integer *, doublecomplex *);


/*  -- LAPACK routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     September 30, 1994 */

/*     .. Scalar Arguments .. */
/*<       INTEGER            IHI, ILO, INFO, LDA, N >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGEHD2 reduces a complex general matrix A to upper Hessenberg form H */
/*  by a unitary similarity transformation:  Q' * A * Q = H . */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  ILO     (input) INTEGER */
/*  IHI     (input) INTEGER */
/*          It is assumed that A is already upper triangular in rows */
/*          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
/*          set by a previous call to ZGEBAL; otherwise they should be */
/*          set to 1 and N respectively. See Further Details. */
/*          1 <= ILO <= IHI <= max(1,N). */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the n by n general matrix to be reduced. */
/*          On exit, the upper triangle and the first subdiagonal of A */
/*          are overwritten with the upper Hessenberg matrix H, and the */
/*          elements below the first subdiagonal, with the array TAU, */
/*          represent the unitary matrix Q as a product of elementary */
/*          reflectors. See Further Details. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  TAU     (output) COMPLEX*16 array, dimension (N-1) */
/*          The scalar factors of the elementary reflectors (see Further */
/*          Details). */

/*  WORK    (workspace) COMPLEX*16 array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of (ihi-ilo) elementary */
/*  reflectors */

/*     Q = H(ilo) H(ilo+1) . . . H(ihi-1). */

/*  Each H(i) has the form */

/*     H(i) = I - tau * v * v' */

/*  where tau is a complex scalar, and v is a complex vector with */
/*  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on */
/*  exit in A(i+2:ihi,i), and tau in TAU(i). */

/*  The contents of A are illustrated by the following example, with */
/*  n = 7, ilo = 2 and ihi = 6: */

/*  on entry,                        on exit, */

/*  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a ) */
/*  (     a   a   a   a   a   a )    (      a   h   h   h   h   a ) */
/*  (     a   a   a   a   a   a )    (      h   h   h   h   h   h ) */
/*  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h ) */
/*  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h ) */
/*  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h ) */
/*  (                         a )    (                          a ) */

/*  where a denotes an element of the original matrix A, h denotes a */
/*  modified element of the upper Hessenberg matrix H, and vi denotes an */
/*  element of the vector defining H(i). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*<       COMPLEX*16         ONE >*/
/*<       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       INTEGER            I >*/
/*<       COMPLEX*16         ALPHA >*/
/*     .. */
/*     .. External Subroutines .. */
/*<       EXTERNAL           XERBLA, ZLARF, ZLARFG >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          DCONJG, MAX, MIN >*/
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters */

/*<       INFO = 0 >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
/*<       IF( N.LT.0 ) THEN >*/
    if (*n < 0) {
/*<          INFO = -1 >*/
        *info = -1;
/*<       ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN >*/
    } else if (*ilo < 1 || *ilo > max(1,*n)) {
/*<          INFO = -2 >*/
        *info = -2;
/*<       ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN >*/
    } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
/*<          INFO = -3 >*/
        *info = -3;
/*<       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN >*/
    } else if (*lda < max(1,*n)) {
/*<          INFO = -5 >*/
        *info = -5;
/*<       END IF >*/
    }
/*<       IF( INFO.NE.0 ) THEN >*/
    if (*info != 0) {
/*<          CALL XERBLA( 'ZGEHD2', -INFO ) >*/
        i__1 = -(*info);
        xerbla_("ZGEHD2", &i__1, (ftnlen)6);
/*<          RETURN >*/
        return 0;
/*<       END IF >*/
    }

/*<       DO 10 I = ILO, IHI - 1 >*/
    i__1 = *ihi - 1;
    for (i__ = *ilo; i__ <= i__1; ++i__) {

/*        Compute elementary reflector H(i) to annihilate A(i+2:ihi,i) */

/*<          ALPHA = A( I+1, I ) >*/
        i__2 = i__ + 1 + i__ * a_dim1;
        alpha.r = a[i__2].r, alpha.i = a[i__2].i;
/*<          CALL ZLARFG( IHI-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAU( I ) ) >*/
        i__2 = *ihi - i__;
/* Computing MIN */
        i__3 = i__ + 2;
        zlarfg_(&i__2, &alpha, &a[min(i__3,*n) + i__ * a_dim1], &c__1, &tau[
                i__]);
/*<          A( I+1, I ) = ONE >*/
        i__2 = i__ + 1 + i__ * a_dim1;
        a[i__2].r = 1., a[i__2].i = 0.;

/*        Apply H(i) to A(1:ihi,i+1:ihi) from the right */

/*<    >*/
        i__2 = *ihi - i__;
        zlarf_("Right", ihi, &i__2, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
                i__], &a[(i__ + 1) * a_dim1 + 1], lda, &work[1], (ftnlen)5);

/*        Apply H(i)' to A(i+1:ihi,i+1:n) from the left */

/*<    >*/
        i__2 = *ihi - i__;
        i__3 = *n - i__;
        d_cnjg(&z__1, &tau[i__]);
        zlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &c__1, &z__1,
                 &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1], (ftnlen)4);

/*<          A( I+1, I ) = ALPHA >*/
        i__2 = i__ + 1 + i__ * a_dim1;
        a[i__2].r = alpha.r, a[i__2].i = alpha.i;
/*<    10 CONTINUE >*/
/* L10: */
    }

/*<       RETURN >*/
    return 0;

/*     End of ZGEHD2 */

/*<       END >*/
} /* zgehd2_ */

#ifdef __cplusplus
        }
#endif