1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
|
/* lapack/complex16/zgehrd.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static doublecomplex c_b2 = {1.,0.};
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;
static integer c__65 = 65;
/*< SUBROUTINE ZGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) >*/
/* Subroutine */ int zgehrd_(integer *n, integer *ilo, integer *ihi,
doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
work, integer *lwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
doublecomplex z__1;
/* Local variables */
integer i__;
doublecomplex t[4160] /* was [65][64] */;
integer ib;
doublecomplex ei;
integer nb, nh, nx=0, iws, nbmin, iinfo;
extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
integer *, doublecomplex *, doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *, ftnlen, ftnlen), zgehd2_(integer *, integer *, integer
*, doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *), xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *,
integer *, integer *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, ftnlen, ftnlen, ftnlen, ftnlen),
zlahrd_(integer *, integer *, integer *, doublecomplex *, integer
*, doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *);
integer ldwork, lwkopt;
logical lquery;
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* .. Scalar Arguments .. */
/*< INTEGER IHI, ILO, INFO, LDA, LWORK, N >*/
/* .. */
/* .. Array Arguments .. */
/*< COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZGEHRD reduces a complex general matrix A to upper Hessenberg form H */
/* by a unitary similarity transformation: Q' * A * Q = H . */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* ILO (input) INTEGER */
/* IHI (input) INTEGER */
/* It is assumed that A is already upper triangular in rows */
/* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
/* set by a previous call to ZGEBAL; otherwise they should be */
/* set to 1 and N respectively. See Further Details. */
/* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
/* On entry, the N-by-N general matrix to be reduced. */
/* On exit, the upper triangle and the first subdiagonal of A */
/* are overwritten with the upper Hessenberg matrix H, and the */
/* elements below the first subdiagonal, with the array TAU, */
/* represent the unitary matrix Q as a product of elementary */
/* reflectors. See Further Details. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* TAU (output) COMPLEX*16 array, dimension (N-1) */
/* The scalar factors of the elementary reflectors (see Further */
/* Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to */
/* zero. */
/* WORK (workspace/output) COMPLEX*16 array, dimension (LWORK) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The length of the array WORK. LWORK >= max(1,N). */
/* For optimum performance LWORK >= N*NB, where NB is the */
/* optimal blocksize. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* Further Details */
/* =============== */
/* The matrix Q is represented as a product of (ihi-ilo) elementary */
/* reflectors */
/* Q = H(ilo) H(ilo+1) . . . H(ihi-1). */
/* Each H(i) has the form */
/* H(i) = I - tau * v * v' */
/* where tau is a complex scalar, and v is a complex vector with */
/* v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on */
/* exit in A(i+2:ihi,i), and tau in TAU(i). */
/* The contents of A are illustrated by the following example, with */
/* n = 7, ilo = 2 and ihi = 6: */
/* on entry, on exit, */
/* ( a a a a a a a ) ( a a h h h h a ) */
/* ( a a a a a a ) ( a h h h h a ) */
/* ( a a a a a a ) ( h h h h h h ) */
/* ( a a a a a a ) ( v2 h h h h h ) */
/* ( a a a a a a ) ( v2 v3 h h h h ) */
/* ( a a a a a a ) ( v2 v3 v4 h h h ) */
/* ( a ) ( a ) */
/* where a denotes an element of the original matrix A, h denotes a */
/* modified element of the upper Hessenberg matrix H, and vi denotes an */
/* element of the vector defining H(i). */
/* ===================================================================== */
/* .. Parameters .. */
/*< INTEGER NBMAX, LDT >*/
/*< PARAMETER ( NBMAX = 64, LDT = NBMAX+1 ) >*/
/*< COMPLEX*16 ZERO, ONE >*/
/*< >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL LQUERY >*/
/*< >*/
/*< COMPLEX*16 EI >*/
/* .. */
/* .. Local Arrays .. */
/*< COMPLEX*16 T( LDT, NBMAX ) >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA, ZGEHD2, ZGEMM, ZLAHRD, ZLARFB >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC MAX, MIN >*/
/* .. */
/* .. External Functions .. */
/*< INTEGER ILAENV >*/
/*< EXTERNAL ILAENV >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
/*< NB = MIN( NBMAX, ILAENV( 1, 'ZGEHRD', ' ', N, ILO, IHI, -1 ) ) >*/
/* Computing MIN */
i__1 = 64, i__2 = ilaenv_(&c__1, "ZGEHRD", " ", n, ilo, ihi, &c_n1, (
ftnlen)6, (ftnlen)1);
nb = min(i__1,i__2);
/*< LWKOPT = N*NB >*/
lwkopt = *n * nb;
/*< WORK( 1 ) = LWKOPT >*/
work[1].r = (doublereal) lwkopt, work[1].i = 0.;
/*< LQUERY = ( LWORK.EQ.-1 ) >*/
lquery = *lwork == -1;
/*< IF( N.LT.0 ) THEN >*/
if (*n < 0) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN >*/
} else if (*ilo < 1 || *ilo > max(1,*n)) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN >*/
} else if (*ihi < min(*ilo,*n) || *ihi > *n) {
/*< INFO = -3 >*/
*info = -3;
/*< ELSE IF( LDA.LT.MAX( 1, N ) ) THEN >*/
} else if (*lda < max(1,*n)) {
/*< INFO = -5 >*/
*info = -5;
/*< ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN >*/
} else if (*lwork < max(1,*n) && ! lquery) {
/*< INFO = -8 >*/
*info = -8;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'ZGEHRD', -INFO ) >*/
i__1 = -(*info);
xerbla_("ZGEHRD", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< ELSE IF( LQUERY ) THEN >*/
} else if (lquery) {
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Set elements 1:ILO-1 and IHI:N-1 of TAU to zero */
/*< DO 10 I = 1, ILO - 1 >*/
i__1 = *ilo - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< TAU( I ) = ZERO >*/
i__2 = i__;
tau[i__2].r = 0., tau[i__2].i = 0.;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< DO 20 I = MAX( 1, IHI ), N - 1 >*/
i__1 = *n - 1;
for (i__ = max(1,*ihi); i__ <= i__1; ++i__) {
/*< TAU( I ) = ZERO >*/
i__2 = i__;
tau[i__2].r = 0., tau[i__2].i = 0.;
/*< 20 CONTINUE >*/
/* L20: */
}
/* Quick return if possible */
/*< NH = IHI - ILO + 1 >*/
nh = *ihi - *ilo + 1;
/*< IF( NH.LE.1 ) THEN >*/
if (nh <= 1) {
/*< WORK( 1 ) = 1 >*/
work[1].r = 1., work[1].i = 0.;
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/*< NBMIN = 2 >*/
nbmin = 2;
/*< IWS = 1 >*/
iws = 1;
/*< IF( NB.GT.1 .AND. NB.LT.NH ) THEN >*/
if (nb > 1 && nb < nh) {
/* Determine when to cross over from blocked to unblocked code */
/* (last block is always handled by unblocked code). */
/*< NX = MAX( NB, ILAENV( 3, 'ZGEHRD', ' ', N, ILO, IHI, -1 ) ) >*/
/* Computing MAX */
i__1 = nb, i__2 = ilaenv_(&c__3, "ZGEHRD", " ", n, ilo, ihi, &c_n1, (
ftnlen)6, (ftnlen)1);
nx = max(i__1,i__2);
/*< IF( NX.LT.NH ) THEN >*/
if (nx < nh) {
/* Determine if workspace is large enough for blocked code. */
/*< IWS = N*NB >*/
iws = *n * nb;
/*< IF( LWORK.LT.IWS ) THEN >*/
if (*lwork < iws) {
/* Not enough workspace to use optimal NB: determine the */
/* minimum value of NB, and reduce NB or force use of */
/* unblocked code. */
/*< >*/
/* Computing MAX */
i__1 = 2, i__2 = ilaenv_(&c__2, "ZGEHRD", " ", n, ilo, ihi, &
c_n1, (ftnlen)6, (ftnlen)1);
nbmin = max(i__1,i__2);
/*< IF( LWORK.GE.N*NBMIN ) THEN >*/
if (*lwork >= *n * nbmin) {
/*< NB = LWORK / N >*/
nb = *lwork / *n;
/*< ELSE >*/
} else {
/*< NB = 1 >*/
nb = 1;
/*< END IF >*/
}
/*< END IF >*/
}
/*< END IF >*/
}
/*< END IF >*/
}
/*< LDWORK = N >*/
ldwork = *n;
/*< IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN >*/
if (nb < nbmin || nb >= nh) {
/* Use unblocked code below */
/*< I = ILO >*/
i__ = *ilo;
/*< ELSE >*/
} else {
/* Use blocked code */
/*< DO 30 I = ILO, IHI - 1 - NX, NB >*/
i__1 = *ihi - 1 - nx;
i__2 = nb;
for (i__ = *ilo; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/*< IB = MIN( NB, IHI-I ) >*/
/* Computing MIN */
i__3 = nb, i__4 = *ihi - i__;
ib = min(i__3,i__4);
/* Reduce columns i:i+ib-1 to Hessenberg form, returning the */
/* matrices V and T of the block reflector H = I - V*T*V' */
/* which performs the reduction, and also the matrix Y = A*V*T */
/*< >*/
zlahrd_(ihi, &i__, &ib, &a[i__ * a_dim1 + 1], lda, &tau[i__], t, &
c__65, &work[1], &ldwork);
/* Apply the block reflector H to A(1:ihi,i+ib:ihi) from the */
/* right, computing A := A - Y * V'. V(i+ib,ib-1) must be set */
/* to 1. */
/*< EI = A( I+IB, I+IB-1 ) >*/
i__3 = i__ + ib + (i__ + ib - 1) * a_dim1;
ei.r = a[i__3].r, ei.i = a[i__3].i;
/*< A( I+IB, I+IB-1 ) = ONE >*/
i__3 = i__ + ib + (i__ + ib - 1) * a_dim1;
a[i__3].r = 1., a[i__3].i = 0.;
/*< >*/
i__3 = *ihi - i__ - ib + 1;
z__1.r = -1., z__1.i = -0.;
zgemm_("No transpose", "Conjugate transpose", ihi, &i__3, &ib, &
z__1, &work[1], &ldwork, &a[i__ + ib + i__ * a_dim1], lda,
&c_b2, &a[(i__ + ib) * a_dim1 + 1], lda, (ftnlen)12, (
ftnlen)19);
/*< A( I+IB, I+IB-1 ) = EI >*/
i__3 = i__ + ib + (i__ + ib - 1) * a_dim1;
a[i__3].r = ei.r, a[i__3].i = ei.i;
/* Apply the block reflector H to A(i+1:ihi,i+ib:n) from the */
/* left */
/*< >*/
i__3 = *ihi - i__;
i__4 = *n - i__ - ib + 1;
zlarfb_("Left", "Conjugate transpose", "Forward", "Columnwise", &
i__3, &i__4, &ib, &a[i__ + 1 + i__ * a_dim1], lda, t, &
c__65, &a[i__ + 1 + (i__ + ib) * a_dim1], lda, &work[1], &
ldwork, (ftnlen)4, (ftnlen)19, (ftnlen)7, (ftnlen)10);
/*< 30 CONTINUE >*/
/* L30: */
}
/*< END IF >*/
}
/* Use unblocked code to reduce the rest of the matrix */
/*< CALL ZGEHD2( N, I, IHI, A, LDA, TAU, WORK, IINFO ) >*/
zgehd2_(n, &i__, ihi, &a[a_offset], lda, &tau[1], &work[1], &iinfo);
/*< WORK( 1 ) = IWS >*/
work[1].r = (doublereal) iws, work[1].i = 0.;
/*< RETURN >*/
return 0;
/* End of ZGEHRD */
/*< END >*/
} /* zgehrd_ */
#ifdef __cplusplus
}
#endif
|