1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
|
/* lapack/complex16/zhseqr.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static doublecomplex c_b1 = {0.,0.};
static doublecomplex c_b2 = {1.,0.};
static integer c__1 = 1;
static integer c__4 = 4;
static integer c_n1 = -1;
static integer c__2 = 2;
static integer c__8 = 8;
static integer c__15 = 15;
static logical c_false = FALSE_;
/*< >*/
/* Subroutine */ int zhseqr_(char *job, char *compz, integer *n, integer *ilo,
integer *ihi, doublecomplex *h__, integer *ldh, doublecomplex *w,
doublecomplex *z__, integer *ldz, doublecomplex *work, integer *lwork,
integer *info, ftnlen job_len, ftnlen compz_len)
{
/* System generated locals */
address a__1[2];
integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4[2],
i__5, i__6;
doublereal d__1, d__2, d__3, d__4;
doublecomplex z__1;
char ch__1[2];
/* Builtin functions */
double d_imag(doublecomplex *);
void d_cnjg(doublecomplex *, doublecomplex *);
/* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
/* Local variables */
integer i__, j, k, l;
doublecomplex s[225] /* was [15][15] */, v[16];
integer i1, i2, ii, nh, nr, ns, nv;
doublecomplex vv[16];
integer itn;
doublecomplex tau;
integer its;
doublereal ulp, tst1;
integer maxb, ierr;
doublereal unfl;
doublecomplex temp;
doublereal ovfl;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
doublecomplex *, integer *);
integer itemp;
doublereal rtemp;
extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *, doublecomplex *, doublecomplex *, integer *, ftnlen);
logical initz, wantt, wantz;
doublereal rwork[1];
extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *);
extern doublereal dlapy2_(doublereal *, doublereal *);
extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
extern doublereal dlamch_(char *, ftnlen);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ int zdscal_(integer *, doublereal *,
doublecomplex *, integer *), zlarfg_(integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *);
extern integer izamax_(integer *, doublecomplex *, integer *);
extern doublereal zlanhs_(char *, integer *, doublecomplex *, integer *,
doublereal *, ftnlen);
extern /* Subroutine */ int zlahqr_(logical *, logical *, integer *,
integer *, integer *, doublecomplex *, integer *, doublecomplex *,
integer *, integer *, doublecomplex *, integer *, integer *),
zlacpy_(char *, integer *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, ftnlen), zlaset_(char *, integer *,
integer *, doublecomplex *, doublecomplex *, doublecomplex *,
integer *, ftnlen), zlarfx_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, doublecomplex *, integer *,
doublecomplex *, ftnlen);
doublereal smlnum;
logical lquery;
(void)job_len;
(void)compz_len;
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* .. Scalar Arguments .. */
/*< CHARACTER COMPZ, JOB >*/
/*< INTEGER IHI, ILO, INFO, LDH, LDZ, LWORK, N >*/
/* .. */
/* .. Array Arguments .. */
/*< COMPLEX*16 H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZHSEQR computes the eigenvalues of a complex upper Hessenberg */
/* matrix H, and, optionally, the matrices T and Z from the Schur */
/* decomposition H = Z T Z**H, where T is an upper triangular matrix */
/* (the Schur form), and Z is the unitary matrix of Schur vectors. */
/* Optionally Z may be postmultiplied into an input unitary matrix Q, */
/* so that this routine can give the Schur factorization of a matrix A */
/* which has been reduced to the Hessenberg form H by the unitary */
/* matrix Q: A = Q*H*Q**H = (QZ)*T*(QZ)**H. */
/* Arguments */
/* ========= */
/* JOB (input) CHARACTER*1 */
/* = 'E': compute eigenvalues only; */
/* = 'S': compute eigenvalues and the Schur form T. */
/* COMPZ (input) CHARACTER*1 */
/* = 'N': no Schur vectors are computed; */
/* = 'I': Z is initialized to the unit matrix and the matrix Z */
/* of Schur vectors of H is returned; */
/* = 'V': Z must contain an unitary matrix Q on entry, and */
/* the product Q*Z is returned. */
/* N (input) INTEGER */
/* The order of the matrix H. N >= 0. */
/* ILO (input) INTEGER */
/* IHI (input) INTEGER */
/* It is assumed that H is already upper triangular in rows */
/* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
/* set by a previous call to ZGEBAL, and then passed to CGEHRD */
/* when the matrix output by ZGEBAL is reduced to Hessenberg */
/* form. Otherwise ILO and IHI should be set to 1 and N */
/* respectively. */
/* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
/* H (input/output) COMPLEX*16 array, dimension (LDH,N) */
/* On entry, the upper Hessenberg matrix H. */
/* On exit, if JOB = 'S', H contains the upper triangular matrix */
/* T from the Schur decomposition (the Schur form). If */
/* JOB = 'E', the contents of H are unspecified on exit. */
/* LDH (input) INTEGER */
/* The leading dimension of the array H. LDH >= max(1,N). */
/* W (output) COMPLEX*16 array, dimension (N) */
/* The computed eigenvalues. If JOB = 'S', the eigenvalues are */
/* stored in the same order as on the diagonal of the Schur form */
/* returned in H, with W(i) = H(i,i). */
/* Z (input/output) COMPLEX*16 array, dimension (LDZ,N) */
/* If COMPZ = 'N': Z is not referenced. */
/* If COMPZ = 'I': on entry, Z need not be set, and on exit, Z */
/* contains the unitary matrix Z of the Schur vectors of H. */
/* If COMPZ = 'V': on entry Z must contain an N-by-N matrix Q, */
/* which is assumed to be equal to the unit matrix except for */
/* the submatrix Z(ILO:IHI,ILO:IHI); on exit Z contains Q*Z. */
/* Normally Q is the unitary matrix generated by ZUNGHR after */
/* the call to ZGEHRD which formed the Hessenberg matrix H. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. */
/* LDZ >= max(1,N) if COMPZ = 'I' or 'V'; LDZ >= 1 otherwise. */
/* WORK (workspace/output) COMPLEX*16 array, dimension (LWORK) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= max(1,N). */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, ZHSEQR failed to compute all the */
/* eigenvalues in a total of 30*(IHI-ILO+1) iterations; */
/* elements 1:ilo-1 and i+1:n of W contain those */
/* eigenvalues which have been successfully computed. */
/* ===================================================================== */
/* .. Parameters .. */
/*< COMPLEX*16 ZERO, ONE >*/
/*< >*/
/*< DOUBLE PRECISION RZERO, RONE, CONST >*/
/*< >*/
/*< INTEGER NSMAX, LDS >*/
/*< PARAMETER ( NSMAX = 15, LDS = NSMAX ) >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL INITZ, LQUERY, WANTT, WANTZ >*/
/*< >*/
/*< DOUBLE PRECISION OVFL, RTEMP, SMLNUM, TST1, ULP, UNFL >*/
/*< COMPLEX*16 CDUM, TAU, TEMP >*/
/* .. */
/* .. Local Arrays .. */
/*< DOUBLE PRECISION RWORK( 1 ) >*/
/*< COMPLEX*16 S( LDS, NSMAX ), V( NSMAX+1 ), VV( NSMAX+1 ) >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< INTEGER ILAENV, IZAMAX >*/
/*< DOUBLE PRECISION DLAMCH, DLAPY2, ZLANHS >*/
/*< EXTERNAL LSAME, ILAENV, IZAMAX, DLAMCH, DLAPY2, ZLANHS >*/
/* .. */
/* .. External Subroutines .. */
/*< >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX, MIN >*/
/* .. */
/* .. Statement Functions .. */
/*< DOUBLE PRECISION CABS1 >*/
/* .. */
/* .. Statement Function definitions .. */
/*< CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) ) >*/
/* .. */
/* .. Executable Statements .. */
/* Decode and test the input parameters */
/*< WANTT = LSAME( JOB, 'S' ) >*/
/* Parameter adjustments */
h_dim1 = *ldh;
h_offset = 1 + h_dim1;
h__ -= h_offset;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
/* Function Body */
wantt = lsame_(job, "S", (ftnlen)1, (ftnlen)1);
/*< INITZ = LSAME( COMPZ, 'I' ) >*/
initz = lsame_(compz, "I", (ftnlen)1, (ftnlen)1);
/*< WANTZ = INITZ .OR. LSAME( COMPZ, 'V' ) >*/
wantz = initz || lsame_(compz, "V", (ftnlen)1, (ftnlen)1);
/*< INFO = 0 >*/
*info = 0;
/*< WORK( 1 ) = MAX( 1, N ) >*/
i__1 = max(1,*n);
work[1].r = (doublereal) i__1, work[1].i = 0.;
/*< LQUERY = ( LWORK.EQ.-1 ) >*/
lquery = *lwork == -1;
/*< IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN >*/
if (! lsame_(job, "E", (ftnlen)1, (ftnlen)1) && ! wantt) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN >*/
} else if (! lsame_(compz, "N", (ftnlen)1, (ftnlen)1) && ! wantz) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -3 >*/
*info = -3;
/*< ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN >*/
} else if (*ilo < 1 || *ilo > max(1,*n)) {
/*< INFO = -4 >*/
*info = -4;
/*< ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN >*/
} else if (*ihi < min(*ilo,*n) || *ihi > *n) {
/*< INFO = -5 >*/
*info = -5;
/*< ELSE IF( LDH.LT.MAX( 1, N ) ) THEN >*/
} else if (*ldh < max(1,*n)) {
/*< INFO = -7 >*/
*info = -7;
/*< ELSE IF( LDZ.LT.1 .OR. WANTZ .AND. LDZ.LT.MAX( 1, N ) ) THEN >*/
} else if (*ldz < 1 || (wantz && *ldz < max(1,*n))) {
/*< INFO = -10 >*/
*info = -10;
/*< ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN >*/
} else if (*lwork < max(1,*n) && ! lquery) {
/*< INFO = -12 >*/
*info = -12;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'ZHSEQR', -INFO ) >*/
i__1 = -(*info);
xerbla_("ZHSEQR", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< ELSE IF( LQUERY ) THEN >*/
} else if (lquery) {
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Initialize Z, if necessary */
/*< >*/
if (initz) {
zlaset_("Full", n, n, &c_b1, &c_b2, &z__[z_offset], ldz, (ftnlen)4);
}
/* Store the eigenvalues isolated by ZGEBAL. */
/*< DO 10 I = 1, ILO - 1 >*/
i__1 = *ilo - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< W( I ) = H( I, I ) >*/
i__2 = i__;
i__3 = i__ + i__ * h_dim1;
w[i__2].r = h__[i__3].r, w[i__2].i = h__[i__3].i;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< DO 20 I = IHI + 1, N >*/
i__1 = *n;
for (i__ = *ihi + 1; i__ <= i__1; ++i__) {
/*< W( I ) = H( I, I ) >*/
i__2 = i__;
i__3 = i__ + i__ * h_dim1;
w[i__2].r = h__[i__3].r, w[i__2].i = h__[i__3].i;
/*< 20 CONTINUE >*/
/* L20: */
}
/* Quick return if possible. */
/*< >*/
if (*n == 0) {
return 0;
}
/*< IF( ILO.EQ.IHI ) THEN >*/
if (*ilo == *ihi) {
/*< W( ILO ) = H( ILO, ILO ) >*/
i__1 = *ilo;
i__2 = *ilo + *ilo * h_dim1;
w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i;
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Set rows and columns ILO to IHI to zero below the first */
/* subdiagonal. */
/*< DO 40 J = ILO, IHI - 2 >*/
i__1 = *ihi - 2;
for (j = *ilo; j <= i__1; ++j) {
/*< DO 30 I = J + 2, N >*/
i__2 = *n;
for (i__ = j + 2; i__ <= i__2; ++i__) {
/*< H( I, J ) = ZERO >*/
i__3 = i__ + j * h_dim1;
h__[i__3].r = 0., h__[i__3].i = 0.;
/*< 30 CONTINUE >*/
/* L30: */
}
/*< 40 CONTINUE >*/
/* L40: */
}
/*< NH = IHI - ILO + 1 >*/
nh = *ihi - *ilo + 1;
/* I1 and I2 are the indices of the first row and last column of H */
/* to which transformations must be applied. If eigenvalues only are */
/* being computed, I1 and I2 are re-set inside the main loop. */
/*< IF( WANTT ) THEN >*/
if (wantt) {
/*< I1 = 1 >*/
i1 = 1;
/*< I2 = N >*/
i2 = *n;
/*< ELSE >*/
} else {
/*< I1 = ILO >*/
i1 = *ilo;
/*< I2 = IHI >*/
i2 = *ihi;
/*< END IF >*/
}
/* Ensure that the subdiagonal elements are real. */
/*< DO 50 I = ILO + 1, IHI >*/
i__1 = *ihi;
for (i__ = *ilo + 1; i__ <= i__1; ++i__) {
/*< TEMP = H( I, I-1 ) >*/
i__2 = i__ + (i__ - 1) * h_dim1;
temp.r = h__[i__2].r, temp.i = h__[i__2].i;
/*< IF( DIMAG( TEMP ).NE.RZERO ) THEN >*/
if (d_imag(&temp) != 0.) {
/*< RTEMP = DLAPY2( DBLE( TEMP ), DIMAG( TEMP ) ) >*/
d__1 = temp.r;
d__2 = d_imag(&temp);
rtemp = dlapy2_(&d__1, &d__2);
/*< H( I, I-1 ) = RTEMP >*/
i__2 = i__ + (i__ - 1) * h_dim1;
h__[i__2].r = rtemp, h__[i__2].i = 0.;
/*< TEMP = TEMP / RTEMP >*/
z__1.r = temp.r / rtemp, z__1.i = temp.i / rtemp;
temp.r = z__1.r, temp.i = z__1.i;
/*< >*/
if (i2 > i__) {
i__2 = i2 - i__;
d_cnjg(&z__1, &temp);
zscal_(&i__2, &z__1, &h__[i__ + (i__ + 1) * h_dim1], ldh);
}
/*< CALL ZSCAL( I-I1, TEMP, H( I1, I ), 1 ) >*/
i__2 = i__ - i1;
zscal_(&i__2, &temp, &h__[i1 + i__ * h_dim1], &c__1);
/*< >*/
if (i__ < *ihi) {
i__2 = i__ + 1 + i__ * h_dim1;
i__3 = i__ + 1 + i__ * h_dim1;
z__1.r = temp.r * h__[i__3].r - temp.i * h__[i__3].i, z__1.i =
temp.r * h__[i__3].i + temp.i * h__[i__3].r;
h__[i__2].r = z__1.r, h__[i__2].i = z__1.i;
}
/*< >*/
if (wantz) {
zscal_(&nh, &temp, &z__[*ilo + i__ * z_dim1], &c__1);
}
/*< END IF >*/
}
/*< 50 CONTINUE >*/
/* L50: */
}
/* Determine the order of the multi-shift QR algorithm to be used. */
/*< NS = ILAENV( 4, 'ZHSEQR', JOB // COMPZ, N, ILO, IHI, -1 ) >*/
/* Writing concatenation */
i__4[0] = 1, a__1[0] = job;
i__4[1] = 1, a__1[1] = compz;
s_cat(ch__1, a__1, i__4, &c__2, (ftnlen)2);
ns = ilaenv_(&c__4, "ZHSEQR", ch__1, n, ilo, ihi, &c_n1, (ftnlen)6, (
ftnlen)2);
/*< MAXB = ILAENV( 8, 'ZHSEQR', JOB // COMPZ, N, ILO, IHI, -1 ) >*/
/* Writing concatenation */
i__4[0] = 1, a__1[0] = job;
i__4[1] = 1, a__1[1] = compz;
s_cat(ch__1, a__1, i__4, &c__2, (ftnlen)2);
maxb = ilaenv_(&c__8, "ZHSEQR", ch__1, n, ilo, ihi, &c_n1, (ftnlen)6, (
ftnlen)2);
/*< IF( NS.LE.1 .OR. NS.GT.NH .OR. MAXB.GE.NH ) THEN >*/
if (ns <= 1 || ns > nh || maxb >= nh) {
/* Use the standard double-shift algorithm */
/*< >*/
zlahqr_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1], ilo,
ihi, &z__[z_offset], ldz, info);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/*< MAXB = MAX( 2, MAXB ) >*/
maxb = max(2,maxb);
/*< NS = MIN( NS, MAXB, NSMAX ) >*/
/* Computing MIN */
i__1 = min(ns,maxb);
ns = min(i__1,15);
/* Now 1 < NS <= MAXB < NH. */
/* Set machine-dependent constants for the stopping criterion. */
/* If norm(H) <= sqrt(OVFL), overflow should not occur. */
/*< UNFL = DLAMCH( 'Safe minimum' ) >*/
unfl = dlamch_("Safe minimum", (ftnlen)12);
/*< OVFL = RONE / UNFL >*/
ovfl = 1. / unfl;
/*< CALL DLABAD( UNFL, OVFL ) >*/
dlabad_(&unfl, &ovfl);
/*< ULP = DLAMCH( 'Precision' ) >*/
ulp = dlamch_("Precision", (ftnlen)9);
/*< SMLNUM = UNFL*( NH / ULP ) >*/
smlnum = unfl * (nh / ulp);
/* ITN is the total number of multiple-shift QR iterations allowed. */
/*< ITN = 30*NH >*/
itn = nh * 30;
/* The main loop begins here. I is the loop index and decreases from */
/* IHI to ILO in steps of at most MAXB. Each iteration of the loop */
/* works with the active submatrix in rows and columns L to I. */
/* Eigenvalues I+1 to IHI have already converged. Either L = ILO, or */
/* H(L,L-1) is negligible so that the matrix splits. */
/*< I = IHI >*/
i__ = *ihi;
/*< 60 CONTINUE >*/
L60:
/*< >*/
if (i__ < *ilo) {
goto L180;
}
/* Perform multiple-shift QR iterations on rows and columns ILO to I */
/* until a submatrix of order at most MAXB splits off at the bottom */
/* because a subdiagonal element has become negligible. */
/*< L = ILO >*/
l = *ilo;
/*< DO 160 ITS = 0, ITN >*/
i__1 = itn;
for (its = 0; its <= i__1; ++its) {
/* Look for a single small subdiagonal element. */
/*< DO 70 K = I, L + 1, -1 >*/
i__2 = l + 1;
for (k = i__; k >= i__2; --k) {
/*< TST1 = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) ) >*/
i__3 = k - 1 + (k - 1) * h_dim1;
i__5 = k + k * h_dim1;
tst1 = (d__1 = h__[i__3].r, abs(d__1)) + (d__2 = d_imag(&h__[k -
1 + (k - 1) * h_dim1]), abs(d__2)) + ((d__3 = h__[i__5].r,
abs(d__3)) + (d__4 = d_imag(&h__[k + k * h_dim1]), abs(
d__4)));
/*< >*/
if (tst1 == 0.) {
i__3 = i__ - l + 1;
tst1 = zlanhs_("1", &i__3, &h__[l + l * h_dim1], ldh, rwork, (
ftnlen)1);
}
/*< >*/
i__3 = k + (k - 1) * h_dim1;
/* Computing MAX */
d__2 = ulp * tst1;
if ((d__1 = h__[i__3].r, abs(d__1)) <= max(d__2,smlnum)) {
goto L80;
}
/*< 70 CONTINUE >*/
/* L70: */
}
/*< 80 CONTINUE >*/
L80:
/*< L = K >*/
l = k;
/*< IF( L.GT.ILO ) THEN >*/
if (l > *ilo) {
/* H(L,L-1) is negligible. */
/*< H( L, L-1 ) = ZERO >*/
i__2 = l + (l - 1) * h_dim1;
h__[i__2].r = 0., h__[i__2].i = 0.;
/*< END IF >*/
}
/* Exit from loop if a submatrix of order <= MAXB has split off. */
/*< >*/
if (l >= i__ - maxb + 1) {
goto L170;
}
/* Now the active submatrix is in rows and columns L to I. If */
/* eigenvalues only are being computed, only the active submatrix */
/* need be transformed. */
/*< IF( .NOT.WANTT ) THEN >*/
if (! wantt) {
/*< I1 = L >*/
i1 = l;
/*< I2 = I >*/
i2 = i__;
/*< END IF >*/
}
/*< IF( ITS.EQ.20 .OR. ITS.EQ.30 ) THEN >*/
if (its == 20 || its == 30) {
/* Exceptional shifts. */
/*< DO 90 II = I - NS + 1, I >*/
i__2 = i__;
for (ii = i__ - ns + 1; ii <= i__2; ++ii) {
/*< >*/
i__3 = ii;
i__5 = ii + (ii - 1) * h_dim1;
i__6 = ii + ii * h_dim1;
d__3 = ((d__1 = h__[i__5].r, abs(d__1)) + (d__2 = h__[i__6].r,
abs(d__2))) * 1.5;
w[i__3].r = d__3, w[i__3].i = 0.;
/*< 90 CONTINUE >*/
/* L90: */
}
/*< ELSE >*/
} else {
/* Use eigenvalues of trailing submatrix of order NS as shifts. */
/*< >*/
zlacpy_("Full", &ns, &ns, &h__[i__ - ns + 1 + (i__ - ns + 1) *
h_dim1], ldh, s, &c__15, (ftnlen)4);
/*< >*/
zlahqr_(&c_false, &c_false, &ns, &c__1, &ns, s, &c__15, &w[i__ -
ns + 1], &c__1, &ns, &z__[z_offset], ldz, &ierr);
/*< IF( IERR.GT.0 ) THEN >*/
if (ierr > 0) {
/* If ZLAHQR failed to compute all NS eigenvalues, use the */
/* unconverged diagonal elements as the remaining shifts. */
/*< DO 100 II = 1, IERR >*/
i__2 = ierr;
for (ii = 1; ii <= i__2; ++ii) {
/*< W( I-NS+II ) = S( II, II ) >*/
i__3 = i__ - ns + ii;
i__5 = ii + ii * 15 - 16;
w[i__3].r = s[i__5].r, w[i__3].i = s[i__5].i;
/*< 100 CONTINUE >*/
/* L100: */
}
/*< END IF >*/
}
/*< END IF >*/
}
/* Form the first column of (G-w(1)) (G-w(2)) . . . (G-w(ns)) */
/* where G is the Hessenberg submatrix H(L:I,L:I) and w is */
/* the vector of shifts (stored in W). The result is */
/* stored in the local array V. */
/*< V( 1 ) = ONE >*/
v[0].r = 1., v[0].i = 0.;
/*< DO 110 II = 2, NS + 1 >*/
i__2 = ns + 1;
for (ii = 2; ii <= i__2; ++ii) {
/*< V( II ) = ZERO >*/
i__3 = ii - 1;
v[i__3].r = 0., v[i__3].i = 0.;
/*< 110 CONTINUE >*/
/* L110: */
}
/*< NV = 1 >*/
nv = 1;
/*< DO 130 J = I - NS + 1, I >*/
i__2 = i__;
for (j = i__ - ns + 1; j <= i__2; ++j) {
/*< CALL ZCOPY( NV+1, V, 1, VV, 1 ) >*/
i__3 = nv + 1;
zcopy_(&i__3, v, &c__1, vv, &c__1);
/*< >*/
i__3 = nv + 1;
i__5 = j;
z__1.r = -w[i__5].r, z__1.i = -w[i__5].i;
zgemv_("No transpose", &i__3, &nv, &c_b2, &h__[l + l * h_dim1],
ldh, vv, &c__1, &z__1, v, &c__1, (ftnlen)12);
/*< NV = NV + 1 >*/
++nv;
/* Scale V(1:NV) so that max(abs(V(i))) = 1. If V is zero, */
/* reset it to the unit vector. */
/*< ITEMP = IZAMAX( NV, V, 1 ) >*/
itemp = izamax_(&nv, v, &c__1);
/*< RTEMP = CABS1( V( ITEMP ) ) >*/
i__3 = itemp - 1;
rtemp = (d__1 = v[i__3].r, abs(d__1)) + (d__2 = d_imag(&v[itemp -
1]), abs(d__2));
/*< IF( RTEMP.EQ.RZERO ) THEN >*/
if (rtemp == 0.) {
/*< V( 1 ) = ONE >*/
v[0].r = 1., v[0].i = 0.;
/*< DO 120 II = 2, NV >*/
i__3 = nv;
for (ii = 2; ii <= i__3; ++ii) {
/*< V( II ) = ZERO >*/
i__5 = ii - 1;
v[i__5].r = 0., v[i__5].i = 0.;
/*< 120 CONTINUE >*/
/* L120: */
}
/*< ELSE >*/
} else {
/*< RTEMP = MAX( RTEMP, SMLNUM ) >*/
rtemp = max(rtemp,smlnum);
/*< CALL ZDSCAL( NV, RONE / RTEMP, V, 1 ) >*/
d__1 = 1. / rtemp;
zdscal_(&nv, &d__1, v, &c__1);
/*< END IF >*/
}
/*< 130 CONTINUE >*/
/* L130: */
}
/* Multiple-shift QR step */
/*< DO 150 K = L, I - 1 >*/
i__2 = i__ - 1;
for (k = l; k <= i__2; ++k) {
/* The first iteration of this loop determines a reflection G */
/* from the vector V and applies it from left and right to H, */
/* thus creating a nonzero bulge below the subdiagonal. */
/* Each subsequent iteration determines a reflection G to */
/* restore the Hessenberg form in the (K-1)th column, and thus */
/* chases the bulge one step toward the bottom of the active */
/* submatrix. NR is the order of G. */
/*< NR = MIN( NS+1, I-K+1 ) >*/
/* Computing MIN */
i__3 = ns + 1, i__5 = i__ - k + 1;
nr = min(i__3,i__5);
/*< >*/
if (k > l) {
zcopy_(&nr, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1);
}
/*< CALL ZLARFG( NR, V( 1 ), V( 2 ), 1, TAU ) >*/
zlarfg_(&nr, v, &v[1], &c__1, &tau);
/*< IF( K.GT.L ) THEN >*/
if (k > l) {
/*< H( K, K-1 ) = V( 1 ) >*/
i__3 = k + (k - 1) * h_dim1;
h__[i__3].r = v[0].r, h__[i__3].i = v[0].i;
/*< DO 140 II = K + 1, I >*/
i__3 = i__;
for (ii = k + 1; ii <= i__3; ++ii) {
/*< H( II, K-1 ) = ZERO >*/
i__5 = ii + (k - 1) * h_dim1;
h__[i__5].r = 0., h__[i__5].i = 0.;
/*< 140 CONTINUE >*/
/* L140: */
}
/*< END IF >*/
}
/*< V( 1 ) = ONE >*/
v[0].r = 1., v[0].i = 0.;
/* Apply G' from the left to transform the rows of the matrix */
/* in columns K to I2. */
/*< >*/
i__3 = i2 - k + 1;
d_cnjg(&z__1, &tau);
zlarfx_("Left", &nr, &i__3, v, &z__1, &h__[k + k * h_dim1], ldh, &
work[1], (ftnlen)4);
/* Apply G from the right to transform the columns of the */
/* matrix in rows I1 to min(K+NR,I). */
/*< >*/
/* Computing MIN */
i__5 = k + nr;
i__3 = min(i__5,i__) - i1 + 1;
zlarfx_("Right", &i__3, &nr, v, &tau, &h__[i1 + k * h_dim1], ldh,
&work[1], (ftnlen)5);
/*< IF( WANTZ ) THEN >*/
if (wantz) {
/* Accumulate transformations in the matrix Z */
/*< >*/
zlarfx_("Right", &nh, &nr, v, &tau, &z__[*ilo + k * z_dim1],
ldz, &work[1], (ftnlen)5);
/*< END IF >*/
}
/*< 150 CONTINUE >*/
/* L150: */
}
/* Ensure that H(I,I-1) is real. */
/*< TEMP = H( I, I-1 ) >*/
i__2 = i__ + (i__ - 1) * h_dim1;
temp.r = h__[i__2].r, temp.i = h__[i__2].i;
/*< IF( DIMAG( TEMP ).NE.RZERO ) THEN >*/
if (d_imag(&temp) != 0.) {
/*< RTEMP = DLAPY2( DBLE( TEMP ), DIMAG( TEMP ) ) >*/
d__1 = temp.r;
d__2 = d_imag(&temp);
rtemp = dlapy2_(&d__1, &d__2);
/*< H( I, I-1 ) = RTEMP >*/
i__2 = i__ + (i__ - 1) * h_dim1;
h__[i__2].r = rtemp, h__[i__2].i = 0.;
/*< TEMP = TEMP / RTEMP >*/
z__1.r = temp.r / rtemp, z__1.i = temp.i / rtemp;
temp.r = z__1.r, temp.i = z__1.i;
/*< >*/
if (i2 > i__) {
i__2 = i2 - i__;
d_cnjg(&z__1, &temp);
zscal_(&i__2, &z__1, &h__[i__ + (i__ + 1) * h_dim1], ldh);
}
/*< CALL ZSCAL( I-I1, TEMP, H( I1, I ), 1 ) >*/
i__2 = i__ - i1;
zscal_(&i__2, &temp, &h__[i1 + i__ * h_dim1], &c__1);
/*< IF( WANTZ ) THEN >*/
if (wantz) {
/*< CALL ZSCAL( NH, TEMP, Z( ILO, I ), 1 ) >*/
zscal_(&nh, &temp, &z__[*ilo + i__ * z_dim1], &c__1);
/*< END IF >*/
}
/*< END IF >*/
}
/*< 160 CONTINUE >*/
/* L160: */
}
/* Failure to converge in remaining number of iterations */
/*< INFO = I >*/
*info = i__;
/*< RETURN >*/
return 0;
/*< 170 CONTINUE >*/
L170:
/* A submatrix of order <= MAXB in rows and columns L to I has split */
/* off. Use the double-shift QR algorithm to handle it. */
/*< >*/
zlahqr_(&wantt, &wantz, n, &l, &i__, &h__[h_offset], ldh, &w[1], ilo, ihi,
&z__[z_offset], ldz, info);
/*< >*/
if (*info > 0) {
return 0;
}
/* Decrement number of remaining iterations, and return to start of */
/* the main loop with a new value of I. */
/*< ITN = ITN - ITS >*/
itn -= its;
/*< I = L - 1 >*/
i__ = l - 1;
/*< GO TO 60 >*/
goto L60;
/*< 180 CONTINUE >*/
L180:
/*< WORK( 1 ) = MAX( 1, N ) >*/
i__1 = max(1,*n);
work[1].r = (doublereal) i__1, work[1].i = 0.;
/*< RETURN >*/
return 0;
/* End of ZHSEQR */
/*< END >*/
} /* zhseqr_ */
#ifdef __cplusplus
}
#endif
|