1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
/* lapack/complex16/zlacpy.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< SUBROUTINE ZLACPY( UPLO, M, N, A, LDA, B, LDB ) >*/
/* Subroutine */ int zlacpy_(char *uplo, integer *m, integer *n,
doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
ftnlen uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
/* Local variables */
integer i__, j;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
(void)uplo_len;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* February 29, 1992 */
/* .. Scalar Arguments .. */
/*< CHARACTER UPLO >*/
/*< INTEGER LDA, LDB, M, N >*/
/* .. */
/* .. Array Arguments .. */
/*< COMPLEX*16 A( LDA, * ), B( LDB, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZLACPY copies all or part of a two-dimensional matrix A to another */
/* matrix B. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* Specifies the part of the matrix A to be copied to B. */
/* = 'U': Upper triangular part */
/* = 'L': Lower triangular part */
/* Otherwise: All of the matrix A */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0. */
/* A (input) COMPLEX*16 array, dimension (LDA,N) */
/* The m by n matrix A. If UPLO = 'U', only the upper trapezium */
/* is accessed; if UPLO = 'L', only the lower trapezium is */
/* accessed. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* B (output) COMPLEX*16 array, dimension (LDB,N) */
/* On exit, B = A in the locations specified by UPLO. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,M). */
/* ===================================================================== */
/* .. Local Scalars .. */
/*< INTEGER I, J >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC MIN >*/
/* .. */
/* .. Executable Statements .. */
/*< IF( LSAME( UPLO, 'U' ) ) THEN >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/*< DO 20 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 10 I = 1, MIN( J, M ) >*/
i__2 = min(j,*m);
for (i__ = 1; i__ <= i__2; ++i__) {
/*< B( I, J ) = A( I, J ) >*/
i__3 = i__ + j * b_dim1;
i__4 = i__ + j * a_dim1;
b[i__3].r = a[i__4].r, b[i__3].i = a[i__4].i;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< 20 CONTINUE >*/
/* L20: */
}
/*< ELSE IF( LSAME( UPLO, 'L' ) ) THEN >*/
} else if (lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
/*< DO 40 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 30 I = J, M >*/
i__2 = *m;
for (i__ = j; i__ <= i__2; ++i__) {
/*< B( I, J ) = A( I, J ) >*/
i__3 = i__ + j * b_dim1;
i__4 = i__ + j * a_dim1;
b[i__3].r = a[i__4].r, b[i__3].i = a[i__4].i;
/*< 30 CONTINUE >*/
/* L30: */
}
/*< 40 CONTINUE >*/
/* L40: */
}
/*< ELSE >*/
} else {
/*< DO 60 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 50 I = 1, M >*/
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< B( I, J ) = A( I, J ) >*/
i__3 = i__ + j * b_dim1;
i__4 = i__ + j * a_dim1;
b[i__3].r = a[i__4].r, b[i__3].i = a[i__4].i;
/*< 50 CONTINUE >*/
/* L50: */
}
/*< 60 CONTINUE >*/
/* L60: */
}
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of ZLACPY */
/*< END >*/
} /* zlacpy_ */
#ifdef __cplusplus
}
#endif
|