File: zlacpy.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (171 lines) | stat: -rw-r--r-- 5,152 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/* lapack/complex16/zlacpy.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/*<       SUBROUTINE ZLACPY( UPLO, M, N, A, LDA, B, LDB ) >*/
/* Subroutine */ int zlacpy_(char *uplo, integer *m, integer *n, 
        doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, 
        ftnlen uplo_len)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;

    /* Local variables */
    integer i__, j;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    (void)uplo_len;

/*  -- LAPACK auxiliary routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     February 29, 1992 */

/*     .. Scalar Arguments .. */
/*<       CHARACTER          UPLO >*/
/*<       INTEGER            LDA, LDB, M, N >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       COMPLEX*16         A( LDA, * ), B( LDB, * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLACPY copies all or part of a two-dimensional matrix A to another */
/*  matrix B. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies the part of the matrix A to be copied to B. */
/*          = 'U':      Upper triangular part */
/*          = 'L':      Lower triangular part */
/*          Otherwise:  All of the matrix A */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
/*          The m by n matrix A.  If UPLO = 'U', only the upper trapezium */
/*          is accessed; if UPLO = 'L', only the lower trapezium is */
/*          accessed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  B       (output) COMPLEX*16 array, dimension (LDB,N) */
/*          On exit, B = A in the locations specified by UPLO. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,M). */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*<       INTEGER            I, J >*/
/*     .. */
/*     .. External Functions .. */
/*<       LOGICAL            LSAME >*/
/*<       EXTERNAL           LSAME >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          MIN >*/
/*     .. */
/*     .. Executable Statements .. */

/*<       IF( LSAME( UPLO, 'U' ) ) THEN >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/*<          DO 20 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             DO 10 I = 1, MIN( J, M ) >*/
            i__2 = min(j,*m);
            for (i__ = 1; i__ <= i__2; ++i__) {
/*<                B( I, J ) = A( I, J ) >*/
                i__3 = i__ + j * b_dim1;
                i__4 = i__ + j * a_dim1;
                b[i__3].r = a[i__4].r, b[i__3].i = a[i__4].i;
/*<    10       CONTINUE >*/
/* L10: */
            }
/*<    20    CONTINUE >*/
/* L20: */
        }

/*<       ELSE IF( LSAME( UPLO, 'L' ) ) THEN >*/
    } else if (lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
/*<          DO 40 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             DO 30 I = J, M >*/
            i__2 = *m;
            for (i__ = j; i__ <= i__2; ++i__) {
/*<                B( I, J ) = A( I, J ) >*/
                i__3 = i__ + j * b_dim1;
                i__4 = i__ + j * a_dim1;
                b[i__3].r = a[i__4].r, b[i__3].i = a[i__4].i;
/*<    30       CONTINUE >*/
/* L30: */
            }
/*<    40    CONTINUE >*/
/* L40: */
        }

/*<       ELSE >*/
    } else {
/*<          DO 60 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             DO 50 I = 1, M >*/
            i__2 = *m;
            for (i__ = 1; i__ <= i__2; ++i__) {
/*<                B( I, J ) = A( I, J ) >*/
                i__3 = i__ + j * b_dim1;
                i__4 = i__ + j * a_dim1;
                b[i__3].r = a[i__4].r, b[i__3].i = a[i__4].i;
/*<    50       CONTINUE >*/
/* L50: */
            }
/*<    60    CONTINUE >*/
/* L60: */
        }
/*<       END IF >*/
    }

/*<       RETURN >*/
    return 0;

/*     End of ZLACPY */

/*<       END >*/
} /* zlacpy_ */

#ifdef __cplusplus
        }
#endif