1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
|
/* lapack/complex16/zlahqr.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__2 = 2;
static integer c__1 = 1;
/*< >*/
/* Subroutine */ int zlahqr_(logical *wantt, logical *wantz, integer *n,
integer *ilo, integer *ihi, doublecomplex *h__, integer *ldh,
doublecomplex *w, integer *iloz, integer *ihiz, doublecomplex *z__,
integer *ldz, integer *info)
{
/* System generated locals */
integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
doublereal d__1, d__2, d__3, d__4, d__5, d__6;
doublecomplex z__1, z__2, z__3, z__4;
/* Builtin functions */
double d_imag(doublecomplex *);
void z_sqrt(doublecomplex *, doublecomplex *), d_cnjg(doublecomplex *,
doublecomplex *);
double z_abs(doublecomplex *);
/* Local variables */
integer i__, j, k, l, m;
doublereal s;
doublecomplex t, u, v[2], x, y;
integer i1=0, i2=0;
doublecomplex t1;
doublereal t2;
doublecomplex v2;
doublereal h10;
doublecomplex h11;
doublereal h21;
doublecomplex h22;
integer nh, nz;
doublecomplex h11s;
integer itn, its;
doublereal ulp;
doublecomplex sum;
doublereal tst1;
doublecomplex temp;
extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
doublecomplex *, integer *);
doublereal rtemp, rwork[1];
extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *);
extern doublereal dlamch_(char *, ftnlen);
extern /* Subroutine */ int zlarfg_(integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *);
extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
doublecomplex *);
extern doublereal zlanhs_(char *, integer *, doublecomplex *, integer *,
doublereal *, ftnlen);
doublereal smlnum;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* .. Scalar Arguments .. */
/*< LOGICAL WANTT, WANTZ >*/
/*< INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N >*/
/* .. */
/* .. Array Arguments .. */
/*< COMPLEX*16 H( LDH, * ), W( * ), Z( LDZ, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZLAHQR is an auxiliary routine called by ZHSEQR to update the */
/* eigenvalues and Schur decomposition already computed by ZHSEQR, by */
/* dealing with the Hessenberg submatrix in rows and columns ILO to IHI. */
/* Arguments */
/* ========= */
/* WANTT (input) LOGICAL */
/* = .TRUE. : the full Schur form T is required; */
/* = .FALSE.: only eigenvalues are required. */
/* WANTZ (input) LOGICAL */
/* = .TRUE. : the matrix of Schur vectors Z is required; */
/* = .FALSE.: Schur vectors are not required. */
/* N (input) INTEGER */
/* The order of the matrix H. N >= 0. */
/* ILO (input) INTEGER */
/* IHI (input) INTEGER */
/* It is assumed that H is already upper triangular in rows and */
/* columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1). */
/* ZLAHQR works primarily with the Hessenberg submatrix in rows */
/* and columns ILO to IHI, but applies transformations to all of */
/* H if WANTT is .TRUE.. */
/* 1 <= ILO <= max(1,IHI); IHI <= N. */
/* H (input/output) COMPLEX*16 array, dimension (LDH,N) */
/* On entry, the upper Hessenberg matrix H. */
/* On exit, if WANTT is .TRUE., H is upper triangular in rows */
/* and columns ILO:IHI, with any 2-by-2 diagonal blocks in */
/* standard form. If WANTT is .FALSE., the contents of H are */
/* unspecified on exit. */
/* LDH (input) INTEGER */
/* The leading dimension of the array H. LDH >= max(1,N). */
/* W (output) COMPLEX*16 array, dimension (N) */
/* The computed eigenvalues ILO to IHI are stored in the */
/* corresponding elements of W. If WANTT is .TRUE., the */
/* eigenvalues are stored in the same order as on the diagonal */
/* of the Schur form returned in H, with W(i) = H(i,i). */
/* ILOZ (input) INTEGER */
/* IHIZ (input) INTEGER */
/* Specify the rows of Z to which transformations must be */
/* applied if WANTZ is .TRUE.. */
/* 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
/* Z (input/output) COMPLEX*16 array, dimension (LDZ,N) */
/* If WANTZ is .TRUE., on entry Z must contain the current */
/* matrix Z of transformations accumulated by ZHSEQR, and on */
/* exit Z has been updated; transformations are applied only to */
/* the submatrix Z(ILOZ:IHIZ,ILO:IHI). */
/* If WANTZ is .FALSE., Z is not referenced. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= max(1,N). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* > 0: if INFO = i, ZLAHQR failed to compute all the */
/* eigenvalues ILO to IHI in a total of 30*(IHI-ILO+1) */
/* iterations; elements i+1:ihi of W contain those */
/* eigenvalues which have been successfully computed. */
/* ===================================================================== */
/* .. Parameters .. */
/*< COMPLEX*16 ZERO, ONE >*/
/*< >*/
/*< DOUBLE PRECISION RZERO, HALF >*/
/*< PARAMETER ( RZERO = 0.0D+0, HALF = 0.5D+0 ) >*/
/*< DOUBLE PRECISION DAT1 >*/
/*< PARAMETER ( DAT1 = 0.75D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< INTEGER I, I1, I2, ITN, ITS, J, K, L, M, NH, NZ >*/
/*< DOUBLE PRECISION H10, H21, RTEMP, S, SMLNUM, T2, TST1, ULP >*/
/*< >*/
/* .. */
/* .. Local Arrays .. */
/*< DOUBLE PRECISION RWORK( 1 ) >*/
/*< COMPLEX*16 V( 2 ) >*/
/* .. */
/* .. External Functions .. */
/*< DOUBLE PRECISION DLAMCH, ZLANHS >*/
/*< COMPLEX*16 ZLADIV >*/
/*< EXTERNAL DLAMCH, ZLANHS, ZLADIV >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL ZCOPY, ZLARFG, ZSCAL >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT >*/
/* .. */
/* .. Statement Functions .. */
/*< DOUBLE PRECISION CABS1 >*/
/* .. */
/* .. Statement Function definitions .. */
/*< CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) ) >*/
/* .. */
/* .. Executable Statements .. */
/*< INFO = 0 >*/
/* Parameter adjustments */
h_dim1 = *ldh;
h_offset = 1 + h_dim1;
h__ -= h_offset;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
/* Function Body */
*info = 0;
/* Quick return if possible */
/*< >*/
if (*n == 0) {
return 0;
}
/*< IF( ILO.EQ.IHI ) THEN >*/
if (*ilo == *ihi) {
/*< W( ILO ) = H( ILO, ILO ) >*/
i__1 = *ilo;
i__2 = *ilo + *ilo * h_dim1;
w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i;
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/*< NH = IHI - ILO + 1 >*/
nh = *ihi - *ilo + 1;
/*< NZ = IHIZ - ILOZ + 1 >*/
nz = *ihiz - *iloz + 1;
/* Set machine-dependent constants for the stopping criterion. */
/* If norm(H) <= sqrt(OVFL), overflow should not occur. */
/*< ULP = DLAMCH( 'Precision' ) >*/
ulp = dlamch_("Precision", (ftnlen)9);
/*< SMLNUM = DLAMCH( 'Safe minimum' ) / ULP >*/
smlnum = dlamch_("Safe minimum", (ftnlen)12) / ulp;
/* I1 and I2 are the indices of the first row and last column of H */
/* to which transformations must be applied. If eigenvalues only are */
/* being computed, I1 and I2 are set inside the main loop. */
/*< IF( WANTT ) THEN >*/
if (*wantt) {
/*< I1 = 1 >*/
i1 = 1;
/*< I2 = N >*/
i2 = *n;
/*< END IF >*/
}
/* ITN is the total number of QR iterations allowed. */
/*< ITN = 30*NH >*/
itn = nh * 30;
/* The main loop begins here. I is the loop index and decreases from */
/* IHI to ILO in steps of 1. Each iteration of the loop works */
/* with the active submatrix in rows and columns L to I. */
/* Eigenvalues I+1 to IHI have already converged. Either L = ILO, or */
/* H(L,L-1) is negligible so that the matrix splits. */
/*< I = IHI >*/
i__ = *ihi;
/*< 10 CONTINUE >*/
L10:
/*< >*/
if (i__ < *ilo) {
goto L130;
}
/* Perform QR iterations on rows and columns ILO to I until a */
/* submatrix of order 1 splits off at the bottom because a */
/* subdiagonal element has become negligible. */
/*< L = ILO >*/
l = *ilo;
/*< DO 110 ITS = 0, ITN >*/
i__1 = itn;
for (its = 0; its <= i__1; ++its) {
/* Look for a single small subdiagonal element. */
/*< DO 20 K = I, L + 1, -1 >*/
i__2 = l + 1;
for (k = i__; k >= i__2; --k) {
/*< TST1 = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) ) >*/
i__3 = k - 1 + (k - 1) * h_dim1;
i__4 = k + k * h_dim1;
tst1 = (d__1 = h__[i__3].r, abs(d__1)) + (d__2 = d_imag(&h__[k -
1 + (k - 1) * h_dim1]), abs(d__2)) + ((d__3 = h__[i__4].r,
abs(d__3)) + (d__4 = d_imag(&h__[k + k * h_dim1]), abs(
d__4)));
/*< >*/
if (tst1 == 0.) {
i__3 = i__ - l + 1;
tst1 = zlanhs_("1", &i__3, &h__[l + l * h_dim1], ldh, rwork, (
ftnlen)1);
}
/*< >*/
i__3 = k + (k - 1) * h_dim1;
/* Computing MAX */
d__2 = ulp * tst1;
if ((d__1 = h__[i__3].r, abs(d__1)) <= max(d__2,smlnum)) {
goto L30;
}
/*< 20 CONTINUE >*/
/* L20: */
}
/*< 30 CONTINUE >*/
L30:
/*< L = K >*/
l = k;
/*< IF( L.GT.ILO ) THEN >*/
if (l > *ilo) {
/* H(L,L-1) is negligible */
/*< H( L, L-1 ) = ZERO >*/
i__2 = l + (l - 1) * h_dim1;
h__[i__2].r = 0., h__[i__2].i = 0.;
/*< END IF >*/
}
/* Exit from loop if a submatrix of order 1 has split off. */
/*< >*/
if (l >= i__) {
goto L120;
}
/* Now the active submatrix is in rows and columns L to I. If */
/* eigenvalues only are being computed, only the active submatrix */
/* need be transformed. */
/*< IF( .NOT.WANTT ) THEN >*/
if (! (*wantt)) {
/*< I1 = L >*/
i1 = l;
/*< I2 = I >*/
i2 = i__;
/*< END IF >*/
}
/*< IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN >*/
if (its == 10 || its == 20) {
/* Exceptional shift. */
/*< S = DAT1*ABS( DBLE( H( I, I-1 ) ) ) >*/
i__2 = i__ + (i__ - 1) * h_dim1;
s = (d__1 = h__[i__2].r, abs(d__1)) * .75;
/*< T = S + H( I, I ) >*/
i__2 = i__ + i__ * h_dim1;
z__1.r = s + h__[i__2].r, z__1.i = h__[i__2].i;
t.r = z__1.r, t.i = z__1.i;
/*< ELSE >*/
} else {
/* Wilkinson's shift. */
/*< T = H( I, I ) >*/
i__2 = i__ + i__ * h_dim1;
t.r = h__[i__2].r, t.i = h__[i__2].i;
/*< U = H( I-1, I )*DBLE( H( I, I-1 ) ) >*/
i__2 = i__ - 1 + i__ * h_dim1;
i__3 = i__ + (i__ - 1) * h_dim1;
d__1 = h__[i__3].r;
z__1.r = d__1 * h__[i__2].r, z__1.i = d__1 * h__[i__2].i;
u.r = z__1.r, u.i = z__1.i;
/*< IF( U.NE.ZERO ) THEN >*/
if (u.r != 0. || u.i != 0.) {
/*< X = HALF*( H( I-1, I-1 )-T ) >*/
i__2 = i__ - 1 + (i__ - 1) * h_dim1;
z__2.r = h__[i__2].r - t.r, z__2.i = h__[i__2].i - t.i;
z__1.r = z__2.r * .5, z__1.i = z__2.i * .5;
x.r = z__1.r, x.i = z__1.i;
/*< Y = SQRT( X*X+U ) >*/
z__3.r = x.r * x.r - x.i * x.i, z__3.i = x.r * x.i + x.i *
x.r;
z__2.r = z__3.r + u.r, z__2.i = z__3.i + u.i;
z_sqrt(&z__1, &z__2);
y.r = z__1.r, y.i = z__1.i;
/*< >*/
if (x.r * y.r + d_imag(&x) * d_imag(&y) < 0.) {
z__1.r = -y.r, z__1.i = -y.i;
y.r = z__1.r, y.i = z__1.i;
}
/*< T = T - ZLADIV( U, ( X+Y ) ) >*/
z__3.r = x.r + y.r, z__3.i = x.i + y.i;
zladiv_(&z__2, &u, &z__3);
z__1.r = t.r - z__2.r, z__1.i = t.i - z__2.i;
t.r = z__1.r, t.i = z__1.i;
/*< END IF >*/
}
/*< END IF >*/
}
/* Look for two consecutive small subdiagonal elements. */
/*< DO 40 M = I - 1, L + 1, -1 >*/
i__2 = l + 1;
for (m = i__ - 1; m >= i__2; --m) {
/* Determine the effect of starting the single-shift QR */
/* iteration at row M, and see if this would make H(M,M-1) */
/* negligible. */
/*< H11 = H( M, M ) >*/
i__3 = m + m * h_dim1;
h11.r = h__[i__3].r, h11.i = h__[i__3].i;
/*< H22 = H( M+1, M+1 ) >*/
i__3 = m + 1 + (m + 1) * h_dim1;
h22.r = h__[i__3].r, h22.i = h__[i__3].i;
/*< H11S = H11 - T >*/
z__1.r = h11.r - t.r, z__1.i = h11.i - t.i;
h11s.r = z__1.r, h11s.i = z__1.i;
/*< H21 = H( M+1, M ) >*/
i__3 = m + 1 + m * h_dim1;
h21 = h__[i__3].r;
/*< S = CABS1( H11S ) + ABS( H21 ) >*/
s = (d__1 = h11s.r, abs(d__1)) + (d__2 = d_imag(&h11s), abs(d__2))
+ abs(h21);
/*< H11S = H11S / S >*/
z__1.r = h11s.r / s, z__1.i = h11s.i / s;
h11s.r = z__1.r, h11s.i = z__1.i;
/*< H21 = H21 / S >*/
h21 /= s;
/*< V( 1 ) = H11S >*/
v[0].r = h11s.r, v[0].i = h11s.i;
/*< V( 2 ) = H21 >*/
v[1].r = h21, v[1].i = 0.;
/*< H10 = H( M, M-1 ) >*/
i__3 = m + (m - 1) * h_dim1;
h10 = h__[i__3].r;
/*< TST1 = CABS1( H11S )*( CABS1( H11 )+CABS1( H22 ) ) >*/
tst1 = ((d__1 = h11s.r, abs(d__1)) + (d__2 = d_imag(&h11s), abs(
d__2))) * ((d__3 = h11.r, abs(d__3)) + (d__4 = d_imag(&
h11), abs(d__4)) + ((d__5 = h22.r, abs(d__5)) + (d__6 =
d_imag(&h22), abs(d__6))));
/*< >*/
if ((d__1 = h10 * h21, abs(d__1)) <= ulp * tst1) {
goto L50;
}
/*< 40 CONTINUE >*/
/* L40: */
}
/*< H11 = H( L, L ) >*/
i__2 = l + l * h_dim1;
h11.r = h__[i__2].r, h11.i = h__[i__2].i;
/*< H22 = H( L+1, L+1 ) >*/
i__2 = l + 1 + (l + 1) * h_dim1;
h22.r = h__[i__2].r, h22.i = h__[i__2].i;
/*< H11S = H11 - T >*/
z__1.r = h11.r - t.r, z__1.i = h11.i - t.i;
h11s.r = z__1.r, h11s.i = z__1.i;
/*< H21 = H( L+1, L ) >*/
i__2 = l + 1 + l * h_dim1;
h21 = h__[i__2].r;
/*< S = CABS1( H11S ) + ABS( H21 ) >*/
s = (d__1 = h11s.r, abs(d__1)) + (d__2 = d_imag(&h11s), abs(d__2)) +
abs(h21);
/*< H11S = H11S / S >*/
z__1.r = h11s.r / s, z__1.i = h11s.i / s;
h11s.r = z__1.r, h11s.i = z__1.i;
/*< H21 = H21 / S >*/
h21 /= s;
/*< V( 1 ) = H11S >*/
v[0].r = h11s.r, v[0].i = h11s.i;
/*< V( 2 ) = H21 >*/
v[1].r = h21, v[1].i = 0.;
/*< 50 CONTINUE >*/
L50:
/* Single-shift QR step */
/*< DO 100 K = M, I - 1 >*/
i__2 = i__ - 1;
for (k = m; k <= i__2; ++k) {
/* The first iteration of this loop determines a reflection G */
/* from the vector V and applies it from left and right to H, */
/* thus creating a nonzero bulge below the subdiagonal. */
/* Each subsequent iteration determines a reflection G to */
/* restore the Hessenberg form in the (K-1)th column, and thus */
/* chases the bulge one step toward the bottom of the active */
/* submatrix. */
/* V(2) is always real before the call to ZLARFG, and hence */
/* after the call T2 ( = T1*V(2) ) is also real. */
/*< >*/
if (k > m) {
zcopy_(&c__2, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1);
}
/*< CALL ZLARFG( 2, V( 1 ), V( 2 ), 1, T1 ) >*/
zlarfg_(&c__2, v, &v[1], &c__1, &t1);
/*< IF( K.GT.M ) THEN >*/
if (k > m) {
/*< H( K, K-1 ) = V( 1 ) >*/
i__3 = k + (k - 1) * h_dim1;
h__[i__3].r = v[0].r, h__[i__3].i = v[0].i;
/*< H( K+1, K-1 ) = ZERO >*/
i__3 = k + 1 + (k - 1) * h_dim1;
h__[i__3].r = 0., h__[i__3].i = 0.;
/*< END IF >*/
}
/*< V2 = V( 2 ) >*/
v2.r = v[1].r, v2.i = v[1].i;
/*< T2 = DBLE( T1*V2 ) >*/
z__1.r = t1.r * v2.r - t1.i * v2.i, z__1.i = t1.r * v2.i + t1.i *
v2.r;
t2 = z__1.r;
/* Apply G from the left to transform the rows of the matrix */
/* in columns K to I2. */
/*< DO 60 J = K, I2 >*/
i__3 = i2;
for (j = k; j <= i__3; ++j) {
/*< SUM = DCONJG( T1 )*H( K, J ) + T2*H( K+1, J ) >*/
d_cnjg(&z__3, &t1);
i__4 = k + j * h_dim1;
z__2.r = z__3.r * h__[i__4].r - z__3.i * h__[i__4].i, z__2.i =
z__3.r * h__[i__4].i + z__3.i * h__[i__4].r;
i__5 = k + 1 + j * h_dim1;
z__4.r = t2 * h__[i__5].r, z__4.i = t2 * h__[i__5].i;
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
sum.r = z__1.r, sum.i = z__1.i;
/*< H( K, J ) = H( K, J ) - SUM >*/
i__4 = k + j * h_dim1;
i__5 = k + j * h_dim1;
z__1.r = h__[i__5].r - sum.r, z__1.i = h__[i__5].i - sum.i;
h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
/*< H( K+1, J ) = H( K+1, J ) - SUM*V2 >*/
i__4 = k + 1 + j * h_dim1;
i__5 = k + 1 + j * h_dim1;
z__2.r = sum.r * v2.r - sum.i * v2.i, z__2.i = sum.r * v2.i +
sum.i * v2.r;
z__1.r = h__[i__5].r - z__2.r, z__1.i = h__[i__5].i - z__2.i;
h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
/*< 60 CONTINUE >*/
/* L60: */
}
/* Apply G from the right to transform the columns of the */
/* matrix in rows I1 to min(K+2,I). */
/*< DO 70 J = I1, MIN( K+2, I ) >*/
/* Computing MIN */
i__4 = k + 2;
i__3 = min(i__4,i__);
for (j = i1; j <= i__3; ++j) {
/*< SUM = T1*H( J, K ) + T2*H( J, K+1 ) >*/
i__4 = j + k * h_dim1;
z__2.r = t1.r * h__[i__4].r - t1.i * h__[i__4].i, z__2.i =
t1.r * h__[i__4].i + t1.i * h__[i__4].r;
i__5 = j + (k + 1) * h_dim1;
z__3.r = t2 * h__[i__5].r, z__3.i = t2 * h__[i__5].i;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
sum.r = z__1.r, sum.i = z__1.i;
/*< H( J, K ) = H( J, K ) - SUM >*/
i__4 = j + k * h_dim1;
i__5 = j + k * h_dim1;
z__1.r = h__[i__5].r - sum.r, z__1.i = h__[i__5].i - sum.i;
h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
/*< H( J, K+1 ) = H( J, K+1 ) - SUM*DCONJG( V2 ) >*/
i__4 = j + (k + 1) * h_dim1;
i__5 = j + (k + 1) * h_dim1;
d_cnjg(&z__3, &v2);
z__2.r = sum.r * z__3.r - sum.i * z__3.i, z__2.i = sum.r *
z__3.i + sum.i * z__3.r;
z__1.r = h__[i__5].r - z__2.r, z__1.i = h__[i__5].i - z__2.i;
h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
/*< 70 CONTINUE >*/
/* L70: */
}
/*< IF( WANTZ ) THEN >*/
if (*wantz) {
/* Accumulate transformations in the matrix Z */
/*< DO 80 J = ILOZ, IHIZ >*/
i__3 = *ihiz;
for (j = *iloz; j <= i__3; ++j) {
/*< SUM = T1*Z( J, K ) + T2*Z( J, K+1 ) >*/
i__4 = j + k * z_dim1;
z__2.r = t1.r * z__[i__4].r - t1.i * z__[i__4].i, z__2.i =
t1.r * z__[i__4].i + t1.i * z__[i__4].r;
i__5 = j + (k + 1) * z_dim1;
z__3.r = t2 * z__[i__5].r, z__3.i = t2 * z__[i__5].i;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
sum.r = z__1.r, sum.i = z__1.i;
/*< Z( J, K ) = Z( J, K ) - SUM >*/
i__4 = j + k * z_dim1;
i__5 = j + k * z_dim1;
z__1.r = z__[i__5].r - sum.r, z__1.i = z__[i__5].i -
sum.i;
z__[i__4].r = z__1.r, z__[i__4].i = z__1.i;
/*< Z( J, K+1 ) = Z( J, K+1 ) - SUM*DCONJG( V2 ) >*/
i__4 = j + (k + 1) * z_dim1;
i__5 = j + (k + 1) * z_dim1;
d_cnjg(&z__3, &v2);
z__2.r = sum.r * z__3.r - sum.i * z__3.i, z__2.i = sum.r *
z__3.i + sum.i * z__3.r;
z__1.r = z__[i__5].r - z__2.r, z__1.i = z__[i__5].i -
z__2.i;
z__[i__4].r = z__1.r, z__[i__4].i = z__1.i;
/*< 80 CONTINUE >*/
/* L80: */
}
/*< END IF >*/
}
/*< IF( K.EQ.M .AND. M.GT.L ) THEN >*/
if (k == m && m > l) {
/* If the QR step was started at row M > L because two */
/* consecutive small subdiagonals were found, then extra */
/* scaling must be performed to ensure that H(M,M-1) remains */
/* real. */
/*< TEMP = ONE - T1 >*/
z__1.r = 1. - t1.r, z__1.i = 0. - t1.i;
temp.r = z__1.r, temp.i = z__1.i;
/*< TEMP = TEMP / ABS( TEMP ) >*/
d__1 = z_abs(&temp);
z__1.r = temp.r / d__1, z__1.i = temp.i / d__1;
temp.r = z__1.r, temp.i = z__1.i;
/*< H( M+1, M ) = H( M+1, M )*DCONJG( TEMP ) >*/
i__3 = m + 1 + m * h_dim1;
i__4 = m + 1 + m * h_dim1;
d_cnjg(&z__2, &temp);
z__1.r = h__[i__4].r * z__2.r - h__[i__4].i * z__2.i, z__1.i =
h__[i__4].r * z__2.i + h__[i__4].i * z__2.r;
h__[i__3].r = z__1.r, h__[i__3].i = z__1.i;
/*< >*/
if (m + 2 <= i__) {
i__3 = m + 2 + (m + 1) * h_dim1;
i__4 = m + 2 + (m + 1) * h_dim1;
z__1.r = h__[i__4].r * temp.r - h__[i__4].i * temp.i,
z__1.i = h__[i__4].r * temp.i + h__[i__4].i *
temp.r;
h__[i__3].r = z__1.r, h__[i__3].i = z__1.i;
}
/*< DO 90 J = M, I >*/
i__3 = i__;
for (j = m; j <= i__3; ++j) {
/*< IF( J.NE.M+1 ) THEN >*/
if (j != m + 1) {
/*< >*/
if (i2 > j) {
i__4 = i2 - j;
zscal_(&i__4, &temp, &h__[j + (j + 1) * h_dim1],
ldh);
}
/*< CALL ZSCAL( J-I1, DCONJG( TEMP ), H( I1, J ), 1 ) >*/
i__4 = j - i1;
d_cnjg(&z__1, &temp);
zscal_(&i__4, &z__1, &h__[i1 + j * h_dim1], &c__1);
/*< IF( WANTZ ) THEN >*/
if (*wantz) {
/*< >*/
d_cnjg(&z__1, &temp);
zscal_(&nz, &z__1, &z__[*iloz + j * z_dim1], &
c__1);
/*< END IF >*/
}
/*< END IF >*/
}
/*< 90 CONTINUE >*/
/* L90: */
}
/*< END IF >*/
}
/*< 100 CONTINUE >*/
/* L100: */
}
/* Ensure that H(I,I-1) is real. */
/*< TEMP = H( I, I-1 ) >*/
i__2 = i__ + (i__ - 1) * h_dim1;
temp.r = h__[i__2].r, temp.i = h__[i__2].i;
/*< IF( DIMAG( TEMP ).NE.RZERO ) THEN >*/
if (d_imag(&temp) != 0.) {
/*< RTEMP = ABS( TEMP ) >*/
rtemp = z_abs(&temp);
/*< H( I, I-1 ) = RTEMP >*/
i__2 = i__ + (i__ - 1) * h_dim1;
h__[i__2].r = rtemp, h__[i__2].i = 0.;
/*< TEMP = TEMP / RTEMP >*/
z__1.r = temp.r / rtemp, z__1.i = temp.i / rtemp;
temp.r = z__1.r, temp.i = z__1.i;
/*< >*/
if (i2 > i__) {
i__2 = i2 - i__;
d_cnjg(&z__1, &temp);
zscal_(&i__2, &z__1, &h__[i__ + (i__ + 1) * h_dim1], ldh);
}
/*< CALL ZSCAL( I-I1, TEMP, H( I1, I ), 1 ) >*/
i__2 = i__ - i1;
zscal_(&i__2, &temp, &h__[i1 + i__ * h_dim1], &c__1);
/*< IF( WANTZ ) THEN >*/
if (*wantz) {
/*< CALL ZSCAL( NZ, TEMP, Z( ILOZ, I ), 1 ) >*/
zscal_(&nz, &temp, &z__[*iloz + i__ * z_dim1], &c__1);
/*< END IF >*/
}
/*< END IF >*/
}
/*< 110 CONTINUE >*/
/* L110: */
}
/* Failure to converge in remaining number of iterations */
/*< INFO = I >*/
*info = i__;
/*< RETURN >*/
return 0;
/*< 120 CONTINUE >*/
L120:
/* H(I,I-1) is negligible: one eigenvalue has converged. */
/*< W( I ) = H( I, I ) >*/
i__1 = i__;
i__2 = i__ + i__ * h_dim1;
w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i;
/* Decrement number of remaining iterations, and return to start of */
/* the main loop with new value of I. */
/*< ITN = ITN - ITS >*/
itn -= its;
/*< I = L - 1 >*/
i__ = l - 1;
/*< GO TO 10 >*/
goto L10;
/*< 130 CONTINUE >*/
L130:
/*< RETURN >*/
return 0;
/* End of ZLAHQR */
/*< END >*/
} /* zlahqr_ */
#ifdef __cplusplus
}
#endif
|