1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
/* lapack/complex16/zlahrd.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static doublecomplex c_b1 = {0.,0.};
static doublecomplex c_b2 = {1.,0.};
static integer c__1 = 1;
/*< SUBROUTINE ZLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY ) >*/
/* Subroutine */ int zlahrd_(integer *n, integer *k, integer *nb,
doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *t,
integer *ldt, doublecomplex *y, integer *ldy)
{
/* System generated locals */
integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2,
i__3;
doublecomplex z__1;
/* Local variables */
integer i__;
doublecomplex ei;
extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *, doublecomplex *, doublecomplex *, integer *, ftnlen),
zcopy_(integer *, doublecomplex *, integer *, doublecomplex *,
integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *,
integer *, doublecomplex *, integer *), ztrmv_(char *, char *,
char *, integer *, doublecomplex *, integer *, doublecomplex *,
integer *, ftnlen, ftnlen, ftnlen), zlarfg_(integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *),
zlacgv_(integer *, doublecomplex *, integer *);
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* .. Scalar Arguments .. */
/*< INTEGER K, LDA, LDT, LDY, N, NB >*/
/* .. */
/* .. Array Arguments .. */
/*< >*/
/* .. */
/* Purpose */
/* ======= */
/* ZLAHRD reduces the first NB columns of a complex general n-by-(n-k+1) */
/* matrix A so that elements below the k-th subdiagonal are zero. The */
/* reduction is performed by a unitary similarity transformation */
/* Q' * A * Q. The routine returns the matrices V and T which determine */
/* Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T. */
/* This is an auxiliary routine called by ZGEHRD. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the matrix A. */
/* K (input) INTEGER */
/* The offset for the reduction. Elements below the k-th */
/* subdiagonal in the first NB columns are reduced to zero. */
/* NB (input) INTEGER */
/* The number of columns to be reduced. */
/* A (input/output) COMPLEX*16 array, dimension (LDA,N-K+1) */
/* On entry, the n-by-(n-k+1) general matrix A. */
/* On exit, the elements on and above the k-th subdiagonal in */
/* the first NB columns are overwritten with the corresponding */
/* elements of the reduced matrix; the elements below the k-th */
/* subdiagonal, with the array TAU, represent the matrix Q as a */
/* product of elementary reflectors. The other columns of A are */
/* unchanged. See Further Details. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* TAU (output) COMPLEX*16 array, dimension (NB) */
/* The scalar factors of the elementary reflectors. See Further */
/* Details. */
/* T (output) COMPLEX*16 array, dimension (LDT,NB) */
/* The upper triangular matrix T. */
/* LDT (input) INTEGER */
/* The leading dimension of the array T. LDT >= NB. */
/* Y (output) COMPLEX*16 array, dimension (LDY,NB) */
/* The n-by-nb matrix Y. */
/* LDY (input) INTEGER */
/* The leading dimension of the array Y. LDY >= max(1,N). */
/* Further Details */
/* =============== */
/* The matrix Q is represented as a product of nb elementary reflectors */
/* Q = H(1) H(2) . . . H(nb). */
/* Each H(i) has the form */
/* H(i) = I - tau * v * v' */
/* where tau is a complex scalar, and v is a complex vector with */
/* v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in */
/* A(i+k+1:n,i), and tau in TAU(i). */
/* The elements of the vectors v together form the (n-k+1)-by-nb matrix */
/* V which is needed, with T and Y, to apply the transformation to the */
/* unreduced part of the matrix, using an update of the form: */
/* A := (I - V*T*V') * (A - Y*V'). */
/* The contents of A on exit are illustrated by the following example */
/* with n = 7, k = 3 and nb = 2: */
/* ( a h a a a ) */
/* ( a h a a a ) */
/* ( a h a a a ) */
/* ( h h a a a ) */
/* ( v1 h a a a ) */
/* ( v1 v2 a a a ) */
/* ( v1 v2 a a a ) */
/* where a denotes an element of the original matrix A, h denotes a */
/* modified element of the upper Hessenberg matrix H, and vi denotes an */
/* element of the vector defining H(i). */
/* ===================================================================== */
/* .. Parameters .. */
/*< COMPLEX*16 ZERO, ONE >*/
/*< >*/
/* .. */
/* .. Local Scalars .. */
/*< INTEGER I >*/
/*< COMPLEX*16 EI >*/
/* .. */
/* .. External Subroutines .. */
/*< >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC MIN >*/
/* .. */
/* .. Executable Statements .. */
/* Quick return if possible */
/*< >*/
/* Parameter adjustments */
--tau;
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
t_dim1 = *ldt;
t_offset = 1 + t_dim1;
t -= t_offset;
y_dim1 = *ldy;
y_offset = 1 + y_dim1;
y -= y_offset;
/* Function Body */
if (*n <= 1) {
return 0;
}
/*< DO 10 I = 1, NB >*/
i__1 = *nb;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< IF( I.GT.1 ) THEN >*/
if (i__ > 1) {
/* Update A(1:n,i) */
/* Compute i-th column of A - Y * V' */
/*< CALL ZLACGV( I-1, A( K+I-1, 1 ), LDA ) >*/
i__2 = i__ - 1;
zlacgv_(&i__2, &a[*k + i__ - 1 + a_dim1], lda);
/*< >*/
i__2 = i__ - 1;
z__1.r = -1., z__1.i = -0.;
zgemv_("No transpose", n, &i__2, &z__1, &y[y_offset], ldy, &a[*k
+ i__ - 1 + a_dim1], lda, &c_b2, &a[i__ * a_dim1 + 1], &
c__1, (ftnlen)12);
/*< CALL ZLACGV( I-1, A( K+I-1, 1 ), LDA ) >*/
i__2 = i__ - 1;
zlacgv_(&i__2, &a[*k + i__ - 1 + a_dim1], lda);
/* Apply I - V * T' * V' to this column (call it b) from the */
/* left, using the last column of T as workspace */
/* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows) */
/* ( V2 ) ( b2 ) */
/* where V1 is unit lower triangular */
/* w := V1' * b1 */
/*< CALL ZCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 ) >*/
i__2 = i__ - 1;
zcopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 +
1], &c__1);
/*< >*/
i__2 = i__ - 1;
ztrmv_("Lower", "Conjugate transpose", "Unit", &i__2, &a[*k + 1 +
a_dim1], lda, &t[*nb * t_dim1 + 1], &c__1, (ftnlen)5, (
ftnlen)19, (ftnlen)4);
/* w := w + V2'*b2 */
/*< >*/
i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*k + i__ +
a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b2, &
t[*nb * t_dim1 + 1], &c__1, (ftnlen)19);
/* w := T'*w */
/*< >*/
i__2 = i__ - 1;
ztrmv_("Upper", "Conjugate transpose", "Non-unit", &i__2, &t[
t_offset], ldt, &t[*nb * t_dim1 + 1], &c__1, (ftnlen)5, (
ftnlen)19, (ftnlen)8);
/* b2 := b2 - V2*w */
/*< >*/
i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
z__1.r = -1., z__1.i = -0.;
zgemv_("No transpose", &i__2, &i__3, &z__1, &a[*k + i__ + a_dim1],
lda, &t[*nb * t_dim1 + 1], &c__1, &c_b2, &a[*k + i__ +
i__ * a_dim1], &c__1, (ftnlen)12);
/* b1 := b1 - V1*w */
/*< >*/
i__2 = i__ - 1;
ztrmv_("Lower", "No transpose", "Unit", &i__2, &a[*k + 1 + a_dim1]
, lda, &t[*nb * t_dim1 + 1], &c__1, (ftnlen)5, (ftnlen)12,
(ftnlen)4);
/*< CALL ZAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 ) >*/
i__2 = i__ - 1;
z__1.r = -1., z__1.i = -0.;
zaxpy_(&i__2, &z__1, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__
* a_dim1], &c__1);
/*< A( K+I-1, I-1 ) = EI >*/
i__2 = *k + i__ - 1 + (i__ - 1) * a_dim1;
a[i__2].r = ei.r, a[i__2].i = ei.i;
/*< END IF >*/
}
/* Generate the elementary reflector H(i) to annihilate */
/* A(k+i+1:n,i) */
/*< EI = A( K+I, I ) >*/
i__2 = *k + i__ + i__ * a_dim1;
ei.r = a[i__2].r, ei.i = a[i__2].i;
/*< >*/
i__2 = *n - *k - i__ + 1;
/* Computing MIN */
i__3 = *k + i__ + 1;
zlarfg_(&i__2, &ei, &a[min(i__3,*n) + i__ * a_dim1], &c__1, &tau[i__])
;
/*< A( K+I, I ) = ONE >*/
i__2 = *k + i__ + i__ * a_dim1;
a[i__2].r = 1., a[i__2].i = 0.;
/* Compute Y(1:n,i) */
/*< >*/
i__2 = *n - *k - i__ + 1;
zgemv_("No transpose", n, &i__2, &c_b2, &a[(i__ + 1) * a_dim1 + 1],
lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b1, &y[i__ *
y_dim1 + 1], &c__1, (ftnlen)12);
/*< >*/
i__2 = *n - *k - i__ + 1;
i__3 = i__ - 1;
zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*k + i__ +
a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b1, &t[
i__ * t_dim1 + 1], &c__1, (ftnlen)19);
/*< >*/
i__2 = i__ - 1;
z__1.r = -1., z__1.i = -0.;
zgemv_("No transpose", n, &i__2, &z__1, &y[y_offset], ldy, &t[i__ *
t_dim1 + 1], &c__1, &c_b2, &y[i__ * y_dim1 + 1], &c__1, (
ftnlen)12);
/*< CALL ZSCAL( N, TAU( I ), Y( 1, I ), 1 ) >*/
zscal_(n, &tau[i__], &y[i__ * y_dim1 + 1], &c__1);
/* Compute T(1:i,i) */
/*< CALL ZSCAL( I-1, -TAU( I ), T( 1, I ), 1 ) >*/
i__2 = i__ - 1;
i__3 = i__;
z__1.r = -tau[i__3].r, z__1.i = -tau[i__3].i;
zscal_(&i__2, &z__1, &t[i__ * t_dim1 + 1], &c__1);
/*< >*/
i__2 = i__ - 1;
ztrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[t_offset], ldt,
&t[i__ * t_dim1 + 1], &c__1, (ftnlen)5, (ftnlen)12, (ftnlen)8)
;
/*< T( I, I ) = TAU( I ) >*/
i__2 = i__ + i__ * t_dim1;
i__3 = i__;
t[i__2].r = tau[i__3].r, t[i__2].i = tau[i__3].i;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< A( K+NB, NB ) = EI >*/
i__1 = *k + *nb + *nb * a_dim1;
a[i__1].r = ei.r, a[i__1].i = ei.i;
/*< RETURN >*/
return 0;
/* End of ZLAHRD */
/*< END >*/
} /* zlahrd_ */
#ifdef __cplusplus
}
#endif
|