File: zlange.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (262 lines) | stat: -rw-r--r-- 7,987 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/* lapack/complex16/zlange.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__1 = 1;

/*<       DOUBLE PRECISION FUNCTION ZLANGE( NORM, M, N, A, LDA, WORK ) >*/
doublereal zlange_(char *norm, integer *m, integer *n, doublecomplex *a, 
        integer *lda, doublereal *work, ftnlen norm_len)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    doublereal ret_val, d__1, d__2;

    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);

    /* Local variables */
    integer i__, j;
    doublereal sum, scale;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    doublereal value=0;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
             doublereal *, doublereal *);
    (void)norm_len;

/*  -- LAPACK auxiliary routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     October 31, 1992 */

/*     .. Scalar Arguments .. */
/*<       CHARACTER          NORM >*/
/*<       INTEGER            LDA, M, N >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       DOUBLE PRECISION   WORK( * ) >*/
/*<       COMPLEX*16         A( LDA, * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLANGE  returns the value of the one norm,  or the Frobenius norm, or */
/*  the  infinity norm,  or the  element of  largest absolute value  of a */
/*  complex matrix A. */

/*  Description */
/*  =========== */

/*  ZLANGE returns the value */

/*     ZLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/*              ( */
/*              ( norm1(A),         NORM = '1', 'O' or 'o' */
/*              ( */
/*              ( normI(A),         NORM = 'I' or 'i' */
/*              ( */
/*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */

/*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
/*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
/*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
/*  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm. */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies the value to be returned in ZLANGE as described */
/*          above. */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0.  When M = 0, */
/*          ZLANGE is set to zero. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0.  When N = 0, */
/*          ZLANGE is set to zero. */

/*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
/*          The m by n matrix A. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(M,1). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK), */
/*          where LWORK >= M when NORM = 'I'; otherwise, WORK is not */
/*          referenced. */

/* ===================================================================== */

/*     .. Parameters .. */
/*<       DOUBLE PRECISION   ONE, ZERO >*/
/*<       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       INTEGER            I, J >*/
/*<       DOUBLE PRECISION   SCALE, SUM, VALUE >*/
/*     .. */
/*     .. External Functions .. */
/*<       LOGICAL            LSAME >*/
/*<       EXTERNAL           LSAME >*/
/*     .. */
/*     .. External Subroutines .. */
/*<       EXTERNAL           ZLASSQ >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          ABS, MAX, MIN, SQRT >*/
/*     .. */
/*     .. Executable Statements .. */

/*<       IF( MIN( M, N ).EQ.0 ) THEN >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --work;

    /* Function Body */
    if (min(*m,*n) == 0) {
/*<          VALUE = ZERO >*/
        value = 0.;
/*<       ELSE IF( LSAME( NORM, 'M' ) ) THEN >*/
    } else if (lsame_(norm, "M", (ftnlen)1, (ftnlen)1)) {

/*        Find max(abs(A(i,j))). */

/*<          VALUE = ZERO >*/
        value = 0.;
/*<          DO 20 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             DO 10 I = 1, M >*/
            i__2 = *m;
            for (i__ = 1; i__ <= i__2; ++i__) {
/*<                VALUE = MAX( VALUE, ABS( A( I, J ) ) ) >*/
/* Computing MAX */
                d__1 = value, d__2 = z_abs(&a[i__ + j * a_dim1]);
                value = max(d__1,d__2);
/*<    10       CONTINUE >*/
/* L10: */
            }
/*<    20    CONTINUE >*/
/* L20: */
        }
/*<       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN >*/
    } else if (lsame_(norm, "O", (ftnlen)1, (ftnlen)1) || *(unsigned char *)
            norm == '1') {

/*        Find norm1(A). */

/*<          VALUE = ZERO >*/
        value = 0.;
/*<          DO 40 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             SUM = ZERO >*/
            sum = 0.;
/*<             DO 30 I = 1, M >*/
            i__2 = *m;
            for (i__ = 1; i__ <= i__2; ++i__) {
/*<                SUM = SUM + ABS( A( I, J ) ) >*/
                sum += z_abs(&a[i__ + j * a_dim1]);
/*<    30       CONTINUE >*/
/* L30: */
            }
/*<             VALUE = MAX( VALUE, SUM ) >*/
            value = max(value,sum);
/*<    40    CONTINUE >*/
/* L40: */
        }
/*<       ELSE IF( LSAME( NORM, 'I' ) ) THEN >*/
    } else if (lsame_(norm, "I", (ftnlen)1, (ftnlen)1)) {

/*        Find normI(A). */

/*<          DO 50 I = 1, M >*/
        i__1 = *m;
        for (i__ = 1; i__ <= i__1; ++i__) {
/*<             WORK( I ) = ZERO >*/
            work[i__] = 0.;
/*<    50    CONTINUE >*/
/* L50: */
        }
/*<          DO 70 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             DO 60 I = 1, M >*/
            i__2 = *m;
            for (i__ = 1; i__ <= i__2; ++i__) {
/*<                WORK( I ) = WORK( I ) + ABS( A( I, J ) ) >*/
                work[i__] += z_abs(&a[i__ + j * a_dim1]);
/*<    60       CONTINUE >*/
/* L60: */
            }
/*<    70    CONTINUE >*/
/* L70: */
        }
/*<          VALUE = ZERO >*/
        value = 0.;
/*<          DO 80 I = 1, M >*/
        i__1 = *m;
        for (i__ = 1; i__ <= i__1; ++i__) {
/*<             VALUE = MAX( VALUE, WORK( I ) ) >*/
/* Computing MAX */
            d__1 = value, d__2 = work[i__];
            value = max(d__1,d__2);
/*<    80    CONTINUE >*/
/* L80: */
        }
/*<       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN >*/
    } else if (lsame_(norm, "F", (ftnlen)1, (ftnlen)1) || lsame_(norm, "E", (
            ftnlen)1, (ftnlen)1)) {

/*        Find normF(A). */

/*<          SCALE = ZERO >*/
        scale = 0.;
/*<          SUM = ONE >*/
        sum = 1.;
/*<          DO 90 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             CALL ZLASSQ( M, A( 1, J ), 1, SCALE, SUM ) >*/
            zlassq_(m, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
/*<    90    CONTINUE >*/
/* L90: */
        }
/*<          VALUE = SCALE*SQRT( SUM ) >*/
        value = scale * sqrt(sum);
/*<       END IF >*/
    }

/*<       ZLANGE = VALUE >*/
    ret_val = value;
/*<       RETURN >*/
    return ret_val;

/*     End of ZLANGE */

/*<       END >*/
} /* zlange_ */

#ifdef __cplusplus
        }
#endif