1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
/* lapack/complex16/zlarf.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static doublecomplex c_b1 = {1.,0.};
static doublecomplex c_b2 = {0.,0.};
static integer c__1 = 1;
/*< SUBROUTINE ZLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK ) >*/
/* Subroutine */ int zlarf_(char *side, integer *m, integer *n, doublecomplex
*v, integer *incv, doublecomplex *tau, doublecomplex *c__, integer *
ldc, doublecomplex *work, ftnlen side_len)
{
/* System generated locals */
integer c_dim1, c_offset;
doublecomplex z__1;
/* Local variables */
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int zgerc_(integer *, integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *, doublecomplex *, doublecomplex *, integer *, ftnlen);
(void)side_len;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* September 30, 1994 */
/* .. Scalar Arguments .. */
/*< CHARACTER SIDE >*/
/*< INTEGER INCV, LDC, M, N >*/
/*< COMPLEX*16 TAU >*/
/* .. */
/* .. Array Arguments .. */
/*< COMPLEX*16 C( LDC, * ), V( * ), WORK( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZLARF applies a complex elementary reflector H to a complex M-by-N */
/* matrix C, from either the left or the right. H is represented in the */
/* form */
/* H = I - tau * v * v' */
/* where tau is a complex scalar and v is a complex vector. */
/* If tau = 0, then H is taken to be the unit matrix. */
/* To apply H' (the conjugate transpose of H), supply conjg(tau) instead */
/* tau. */
/* Arguments */
/* ========= */
/* SIDE (input) CHARACTER*1 */
/* = 'L': form H * C */
/* = 'R': form C * H */
/* M (input) INTEGER */
/* The number of rows of the matrix C. */
/* N (input) INTEGER */
/* The number of columns of the matrix C. */
/* V (input) COMPLEX*16 array, dimension */
/* (1 + (M-1)*abs(INCV)) if SIDE = 'L' */
/* or (1 + (N-1)*abs(INCV)) if SIDE = 'R' */
/* The vector v in the representation of H. V is not used if */
/* TAU = 0. */
/* INCV (input) INTEGER */
/* The increment between elements of v. INCV <> 0. */
/* TAU (input) COMPLEX*16 */
/* The value tau in the representation of H. */
/* C (input/output) COMPLEX*16 array, dimension (LDC,N) */
/* On entry, the M-by-N matrix C. */
/* On exit, C is overwritten by the matrix H * C if SIDE = 'L', */
/* or C * H if SIDE = 'R'. */
/* LDC (input) INTEGER */
/* The leading dimension of the array C. LDC >= max(1,M). */
/* WORK (workspace) COMPLEX*16 array, dimension */
/* (N) if SIDE = 'L' */
/* or (M) if SIDE = 'R' */
/* ===================================================================== */
/* .. Parameters .. */
/*< COMPLEX*16 ONE, ZERO >*/
/*< >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL ZGEMV, ZGERC >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. */
/* .. Executable Statements .. */
/*< IF( LSAME( SIDE, 'L' ) ) THEN >*/
/* Parameter adjustments */
--v;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
/* Function Body */
if (lsame_(side, "L", (ftnlen)1, (ftnlen)1)) {
/* Form H * C */
/*< IF( TAU.NE.ZERO ) THEN >*/
if (tau->r != 0. || tau->i != 0.) {
/* w := C' * v */
/*< >*/
zgemv_("Conjugate transpose", m, n, &c_b1, &c__[c_offset], ldc, &
v[1], incv, &c_b2, &work[1], &c__1, (ftnlen)19);
/* C := C - v * w' */
/*< CALL ZGERC( M, N, -TAU, V, INCV, WORK, 1, C, LDC ) >*/
z__1.r = -tau->r, z__1.i = -tau->i;
zgerc_(m, n, &z__1, &v[1], incv, &work[1], &c__1, &c__[c_offset],
ldc);
/*< END IF >*/
}
/*< ELSE >*/
} else {
/* Form C * H */
/*< IF( TAU.NE.ZERO ) THEN >*/
if (tau->r != 0. || tau->i != 0.) {
/* w := C * v */
/*< >*/
zgemv_("No transpose", m, n, &c_b1, &c__[c_offset], ldc, &v[1],
incv, &c_b2, &work[1], &c__1, (ftnlen)12);
/* C := C - w * v' */
/*< CALL ZGERC( M, N, -TAU, WORK, 1, V, INCV, C, LDC ) >*/
z__1.r = -tau->r, z__1.i = -tau->i;
zgerc_(m, n, &z__1, &work[1], &c__1, &v[1], incv, &c__[c_offset],
ldc);
/*< END IF >*/
}
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of ZLARF */
/*< END >*/
} /* zlarf_ */
#ifdef __cplusplus
}
#endif
|