1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
/* lapack/complex16/zlarfg.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static doublecomplex c_b5 = {1.,0.};
/*< SUBROUTINE ZLARFG( N, ALPHA, X, INCX, TAU ) >*/
/* Subroutine */ int zlarfg_(integer *n, doublecomplex *alpha, doublecomplex *
x, integer *incx, doublecomplex *tau)
{
/* System generated locals */
integer i__1;
doublereal d__1, d__2;
doublecomplex z__1, z__2;
/* Builtin functions */
double d_imag(doublecomplex *), d_sign(doublereal *, doublereal *);
/* Local variables */
integer j, knt;
doublereal beta, alphi, alphr;
extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
doublecomplex *, integer *);
doublereal xnorm;
extern doublereal dlapy3_(doublereal *, doublereal *, doublereal *),
dznrm2_(integer *, doublecomplex *, integer *), dlamch_(char *,
ftnlen);
doublereal safmin;
extern /* Subroutine */ int zdscal_(integer *, doublereal *,
doublecomplex *, integer *);
doublereal rsafmn;
extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
doublecomplex *);
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* September 30, 1994 */
/* .. Scalar Arguments .. */
/*< INTEGER INCX, N >*/
/*< COMPLEX*16 ALPHA, TAU >*/
/* .. */
/* .. Array Arguments .. */
/*< COMPLEX*16 X( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZLARFG generates a complex elementary reflector H of order n, such */
/* that */
/* H' * ( alpha ) = ( beta ), H' * H = I. */
/* ( x ) ( 0 ) */
/* where alpha and beta are scalars, with beta real, and x is an */
/* (n-1)-element complex vector. H is represented in the form */
/* H = I - tau * ( 1 ) * ( 1 v' ) , */
/* ( v ) */
/* where tau is a complex scalar and v is a complex (n-1)-element */
/* vector. Note that H is not hermitian. */
/* If the elements of x are all zero and alpha is real, then tau = 0 */
/* and H is taken to be the unit matrix. */
/* Otherwise 1 <= real(tau) <= 2 and abs(tau-1) <= 1 . */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the elementary reflector. */
/* ALPHA (input/output) COMPLEX*16 */
/* On entry, the value alpha. */
/* On exit, it is overwritten with the value beta. */
/* X (input/output) COMPLEX*16 array, dimension */
/* (1+(N-2)*abs(INCX)) */
/* On entry, the vector x. */
/* On exit, it is overwritten with the vector v. */
/* INCX (input) INTEGER */
/* The increment between elements of X. INCX > 0. */
/* TAU (output) COMPLEX*16 */
/* The value tau. */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ONE, ZERO >*/
/*< PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< INTEGER J, KNT >*/
/*< DOUBLE PRECISION ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM >*/
/* .. */
/* .. External Functions .. */
/*< DOUBLE PRECISION DLAMCH, DLAPY3, DZNRM2 >*/
/*< COMPLEX*16 ZLADIV >*/
/*< EXTERNAL DLAMCH, DLAPY3, DZNRM2, ZLADIV >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, DBLE, DCMPLX, DIMAG, SIGN >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL ZDSCAL, ZSCAL >*/
/* .. */
/* .. Executable Statements .. */
/*< IF( N.LE.0 ) THEN >*/
/* Parameter adjustments */
--x;
/* Function Body */
if (*n <= 0) {
/*< TAU = ZERO >*/
tau->r = 0., tau->i = 0.;
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/*< XNORM = DZNRM2( N-1, X, INCX ) >*/
i__1 = *n - 1;
xnorm = dznrm2_(&i__1, &x[1], incx);
/*< ALPHR = DBLE( ALPHA ) >*/
alphr = alpha->r;
/*< ALPHI = DIMAG( ALPHA ) >*/
alphi = d_imag(alpha);
/*< IF( XNORM.EQ.ZERO .AND. ALPHI.EQ.ZERO ) THEN >*/
if (xnorm == 0. && alphi == 0.) {
/* H = I */
/*< TAU = ZERO >*/
tau->r = 0., tau->i = 0.;
/*< ELSE >*/
} else {
/* general case */
/*< BETA = -SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) >*/
d__1 = dlapy3_(&alphr, &alphi, &xnorm);
beta = -d_sign(&d__1, &alphr);
/*< SAFMIN = DLAMCH( 'S' ) / DLAMCH( 'E' ) >*/
safmin = dlamch_("S", (ftnlen)1) / dlamch_("E", (ftnlen)1);
/*< RSAFMN = ONE / SAFMIN >*/
rsafmn = 1. / safmin;
/*< IF( ABS( BETA ).LT.SAFMIN ) THEN >*/
if (abs(beta) < safmin) {
/* XNORM, BETA may be inaccurate; scale X and recompute them */
/*< KNT = 0 >*/
knt = 0;
/*< 10 CONTINUE >*/
L10:
/*< KNT = KNT + 1 >*/
++knt;
/*< CALL ZDSCAL( N-1, RSAFMN, X, INCX ) >*/
i__1 = *n - 1;
zdscal_(&i__1, &rsafmn, &x[1], incx);
/*< BETA = BETA*RSAFMN >*/
beta *= rsafmn;
/*< ALPHI = ALPHI*RSAFMN >*/
alphi *= rsafmn;
/*< ALPHR = ALPHR*RSAFMN >*/
alphr *= rsafmn;
/*< >*/
if (abs(beta) < safmin) {
goto L10;
}
/* New BETA is at most 1, at least SAFMIN */
/*< XNORM = DZNRM2( N-1, X, INCX ) >*/
i__1 = *n - 1;
xnorm = dznrm2_(&i__1, &x[1], incx);
/*< ALPHA = DCMPLX( ALPHR, ALPHI ) >*/
z__1.r = alphr, z__1.i = alphi;
alpha->r = z__1.r, alpha->i = z__1.i;
/*< BETA = -SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) >*/
d__1 = dlapy3_(&alphr, &alphi, &xnorm);
beta = -d_sign(&d__1, &alphr);
/*< TAU = DCMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA ) >*/
d__1 = (beta - alphr) / beta;
d__2 = -alphi / beta;
z__1.r = d__1, z__1.i = d__2;
tau->r = z__1.r, tau->i = z__1.i;
/*< ALPHA = ZLADIV( DCMPLX( ONE ), ALPHA-BETA ) >*/
z__2.r = alpha->r - beta, z__2.i = alpha->i;
zladiv_(&z__1, &c_b5, &z__2);
alpha->r = z__1.r, alpha->i = z__1.i;
/*< CALL ZSCAL( N-1, ALPHA, X, INCX ) >*/
i__1 = *n - 1;
zscal_(&i__1, alpha, &x[1], incx);
/* If ALPHA is subnormal, it may lose relative accuracy */
/*< ALPHA = BETA >*/
alpha->r = beta, alpha->i = 0.;
/*< DO 20 J = 1, KNT >*/
i__1 = knt;
for (j = 1; j <= i__1; ++j) {
/*< ALPHA = ALPHA*SAFMIN >*/
z__1.r = safmin * alpha->r, z__1.i = safmin * alpha->i;
alpha->r = z__1.r, alpha->i = z__1.i;
/*< 20 CONTINUE >*/
/* L20: */
}
/*< ELSE >*/
} else {
/*< TAU = DCMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA ) >*/
d__1 = (beta - alphr) / beta;
d__2 = -alphi / beta;
z__1.r = d__1, z__1.i = d__2;
tau->r = z__1.r, tau->i = z__1.i;
/*< ALPHA = ZLADIV( DCMPLX( ONE ), ALPHA-BETA ) >*/
z__2.r = alpha->r - beta, z__2.i = alpha->i;
zladiv_(&z__1, &c_b5, &z__2);
alpha->r = z__1.r, alpha->i = z__1.i;
/*< CALL ZSCAL( N-1, ALPHA, X, INCX ) >*/
i__1 = *n - 1;
zscal_(&i__1, alpha, &x[1], incx);
/*< ALPHA = BETA >*/
alpha->r = beta, alpha->i = 0.;
/*< END IF >*/
}
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of ZLARFG */
/*< END >*/
} /* zlarfg_ */
#ifdef __cplusplus
}
#endif
|