1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
/* lapack/complex16/zlaset.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< SUBROUTINE ZLASET( UPLO, M, N, ALPHA, BETA, A, LDA ) >*/
/* Subroutine */ int zlaset_(char *uplo, integer *m, integer *n,
doublecomplex *alpha, doublecomplex *beta, doublecomplex *a, integer *
lda, ftnlen uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
/* Local variables */
integer i__, j;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
(void)uplo_len;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* October 31, 1992 */
/* .. Scalar Arguments .. */
/*< CHARACTER UPLO >*/
/*< INTEGER LDA, M, N >*/
/*< COMPLEX*16 ALPHA, BETA >*/
/* .. */
/* .. Array Arguments .. */
/*< COMPLEX*16 A( LDA, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZLASET initializes a 2-D array A to BETA on the diagonal and */
/* ALPHA on the offdiagonals. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* Specifies the part of the matrix A to be set. */
/* = 'U': Upper triangular part is set. The lower triangle */
/* is unchanged. */
/* = 'L': Lower triangular part is set. The upper triangle */
/* is unchanged. */
/* Otherwise: All of the matrix A is set. */
/* M (input) INTEGER */
/* On entry, M specifies the number of rows of A. */
/* N (input) INTEGER */
/* On entry, N specifies the number of columns of A. */
/* ALPHA (input) COMPLEX*16 */
/* All the offdiagonal array elements are set to ALPHA. */
/* BETA (input) COMPLEX*16 */
/* All the diagonal array elements are set to BETA. */
/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
/* On entry, the m by n matrix A. */
/* On exit, A(i,j) = ALPHA, 1 <= i <= m, 1 <= j <= n, i.ne.j; */
/* A(i,i) = BETA , 1 <= i <= min(m,n) */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* ===================================================================== */
/* .. Local Scalars .. */
/*< INTEGER I, J >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC MIN >*/
/* .. */
/* .. Executable Statements .. */
/*< IF( LSAME( UPLO, 'U' ) ) THEN >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
/* Function Body */
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/* Set the diagonal to BETA and the strictly upper triangular */
/* part of the array to ALPHA. */
/*< DO 20 J = 2, N >*/
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
/*< DO 10 I = 1, MIN( J-1, M ) >*/
/* Computing MIN */
i__3 = j - 1;
i__2 = min(i__3,*m);
for (i__ = 1; i__ <= i__2; ++i__) {
/*< A( I, J ) = ALPHA >*/
i__3 = i__ + j * a_dim1;
a[i__3].r = alpha->r, a[i__3].i = alpha->i;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< 20 CONTINUE >*/
/* L20: */
}
/*< DO 30 I = 1, MIN( N, M ) >*/
i__1 = min(*n,*m);
for (i__ = 1; i__ <= i__1; ++i__) {
/*< A( I, I ) = BETA >*/
i__2 = i__ + i__ * a_dim1;
a[i__2].r = beta->r, a[i__2].i = beta->i;
/*< 30 CONTINUE >*/
/* L30: */
}
/*< ELSE IF( LSAME( UPLO, 'L' ) ) THEN >*/
} else if (lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
/* Set the diagonal to BETA and the strictly lower triangular */
/* part of the array to ALPHA. */
/*< DO 50 J = 1, MIN( M, N ) >*/
i__1 = min(*m,*n);
for (j = 1; j <= i__1; ++j) {
/*< DO 40 I = J + 1, M >*/
i__2 = *m;
for (i__ = j + 1; i__ <= i__2; ++i__) {
/*< A( I, J ) = ALPHA >*/
i__3 = i__ + j * a_dim1;
a[i__3].r = alpha->r, a[i__3].i = alpha->i;
/*< 40 CONTINUE >*/
/* L40: */
}
/*< 50 CONTINUE >*/
/* L50: */
}
/*< DO 60 I = 1, MIN( N, M ) >*/
i__1 = min(*n,*m);
for (i__ = 1; i__ <= i__1; ++i__) {
/*< A( I, I ) = BETA >*/
i__2 = i__ + i__ * a_dim1;
a[i__2].r = beta->r, a[i__2].i = beta->i;
/*< 60 CONTINUE >*/
/* L60: */
}
/*< ELSE >*/
} else {
/* Set the array to BETA on the diagonal and ALPHA on the */
/* offdiagonal. */
/*< DO 80 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 70 I = 1, M >*/
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< A( I, J ) = ALPHA >*/
i__3 = i__ + j * a_dim1;
a[i__3].r = alpha->r, a[i__3].i = alpha->i;
/*< 70 CONTINUE >*/
/* L70: */
}
/*< 80 CONTINUE >*/
/* L80: */
}
/*< DO 90 I = 1, MIN( M, N ) >*/
i__1 = min(*m,*n);
for (i__ = 1; i__ <= i__1; ++i__) {
/*< A( I, I ) = BETA >*/
i__2 = i__ + i__ * a_dim1;
a[i__2].r = beta->r, a[i__2].i = beta->i;
/*< 90 CONTINUE >*/
/* L90: */
}
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of ZLASET */
/*< END >*/
} /* zlaset_ */
#ifdef __cplusplus
}
#endif
|