1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
/* lapack/complex16/zlassq.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< SUBROUTINE ZLASSQ( N, X, INCX, SCALE, SUMSQ ) >*/
/* Subroutine */ int zlassq_(integer *n, doublecomplex *x, integer *incx,
doublereal *scale, doublereal *sumsq)
{
/* System generated locals */
integer i__1, i__2, i__3;
doublereal d__1;
/* Builtin functions */
double d_imag(doublecomplex *);
/* Local variables */
integer ix;
doublereal temp1;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* .. Scalar Arguments .. */
/*< INTEGER INCX, N >*/
/*< DOUBLE PRECISION SCALE, SUMSQ >*/
/* .. */
/* .. Array Arguments .. */
/*< COMPLEX*16 X( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZLASSQ returns the values scl and ssq such that */
/* ( scl**2 )*ssq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq, */
/* where x( i ) = abs( X( 1 + ( i - 1 )*INCX ) ). The value of sumsq is */
/* assumed to be at least unity and the value of ssq will then satisfy */
/* 1.0 .le. ssq .le. ( sumsq + 2*n ). */
/* scale is assumed to be non-negative and scl returns the value */
/* scl = max( scale, abs( real( x( i ) ) ), abs( aimag( x( i ) ) ) ), */
/* i */
/* scale and sumsq must be supplied in SCALE and SUMSQ respectively. */
/* SCALE and SUMSQ are overwritten by scl and ssq respectively. */
/* The routine makes only one pass through the vector X. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The number of elements to be used from the vector X. */
/* X (input) COMPLEX*16 array, dimension (N) */
/* The vector x as described above. */
/* x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. */
/* INCX (input) INTEGER */
/* The increment between successive values of the vector X. */
/* INCX > 0. */
/* SCALE (input/output) DOUBLE PRECISION */
/* On entry, the value scale in the equation above. */
/* On exit, SCALE is overwritten with the value scl . */
/* SUMSQ (input/output) DOUBLE PRECISION */
/* On entry, the value sumsq in the equation above. */
/* On exit, SUMSQ is overwritten with the value ssq . */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ZERO >*/
/*< PARAMETER ( ZERO = 0.0D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< INTEGER IX >*/
/*< DOUBLE PRECISION TEMP1 >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, DBLE, DIMAG >*/
/* .. */
/* .. Executable Statements .. */
/*< IF( N.GT.0 ) THEN >*/
/* Parameter adjustments */
--x;
/* Function Body */
if (*n > 0) {
/*< DO 10 IX = 1, 1 + ( N-1 )*INCX, INCX >*/
i__1 = (*n - 1) * *incx + 1;
i__2 = *incx;
for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) {
/*< IF( DBLE( X( IX ) ).NE.ZERO ) THEN >*/
i__3 = ix;
if (x[i__3].r != 0.) {
/*< TEMP1 = ABS( DBLE( X( IX ) ) ) >*/
i__3 = ix;
temp1 = (d__1 = x[i__3].r, abs(d__1));
/*< IF( SCALE.LT.TEMP1 ) THEN >*/
if (*scale < temp1) {
/*< SUMSQ = 1 + SUMSQ*( SCALE / TEMP1 )**2 >*/
/* Computing 2nd power */
d__1 = *scale / temp1;
*sumsq = *sumsq * (d__1 * d__1) + 1;
/*< SCALE = TEMP1 >*/
*scale = temp1;
/*< ELSE >*/
} else {
/*< SUMSQ = SUMSQ + ( TEMP1 / SCALE )**2 >*/
/* Computing 2nd power */
d__1 = temp1 / *scale;
*sumsq += d__1 * d__1;
/*< END IF >*/
}
/*< END IF >*/
}
/*< IF( DIMAG( X( IX ) ).NE.ZERO ) THEN >*/
if (d_imag(&x[ix]) != 0.) {
/*< TEMP1 = ABS( DIMAG( X( IX ) ) ) >*/
temp1 = (d__1 = d_imag(&x[ix]), abs(d__1));
/*< IF( SCALE.LT.TEMP1 ) THEN >*/
if (*scale < temp1) {
/*< SUMSQ = 1 + SUMSQ*( SCALE / TEMP1 )**2 >*/
/* Computing 2nd power */
d__1 = *scale / temp1;
*sumsq = *sumsq * (d__1 * d__1) + 1;
/*< SCALE = TEMP1 >*/
*scale = temp1;
/*< ELSE >*/
} else {
/*< SUMSQ = SUMSQ + ( TEMP1 / SCALE )**2 >*/
/* Computing 2nd power */
d__1 = temp1 / *scale;
*sumsq += d__1 * d__1;
/*< END IF >*/
}
/*< END IF >*/
}
/*< 10 CONTINUE >*/
/* L10: */
}
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of ZLASSQ */
/*< END >*/
} /* zlassq_ */
#ifdef __cplusplus
}
#endif
|