File: zlassq.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (178 lines) | stat: -rw-r--r-- 5,743 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/* lapack/complex16/zlassq.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/*<       SUBROUTINE ZLASSQ( N, X, INCX, SCALE, SUMSQ ) >*/
/* Subroutine */ int zlassq_(integer *n, doublecomplex *x, integer *incx, 
        doublereal *scale, doublereal *sumsq)
{
    /* System generated locals */
    integer i__1, i__2, i__3;
    doublereal d__1;

    /* Builtin functions */
    double d_imag(doublecomplex *);

    /* Local variables */
    integer ix;
    doublereal temp1;


/*  -- LAPACK auxiliary routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     June 30, 1999 */

/*     .. Scalar Arguments .. */
/*<       INTEGER            INCX, N >*/
/*<       DOUBLE PRECISION   SCALE, SUMSQ >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       COMPLEX*16         X( * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLASSQ returns the values scl and ssq such that */

/*     ( scl**2 )*ssq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq, */

/*  where x( i ) = abs( X( 1 + ( i - 1 )*INCX ) ). The value of sumsq is */
/*  assumed to be at least unity and the value of ssq will then satisfy */

/*     1.0 .le. ssq .le. ( sumsq + 2*n ). */

/*  scale is assumed to be non-negative and scl returns the value */

/*     scl = max( scale, abs( real( x( i ) ) ), abs( aimag( x( i ) ) ) ), */
/*            i */

/*  scale and sumsq must be supplied in SCALE and SUMSQ respectively. */
/*  SCALE and SUMSQ are overwritten by scl and ssq respectively. */

/*  The routine makes only one pass through the vector X. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The number of elements to be used from the vector X. */

/*  X       (input) COMPLEX*16 array, dimension (N) */
/*          The vector x as described above. */
/*             x( i )  = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. */

/*  INCX    (input) INTEGER */
/*          The increment between successive values of the vector X. */
/*          INCX > 0. */

/*  SCALE   (input/output) DOUBLE PRECISION */
/*          On entry, the value  scale  in the equation above. */
/*          On exit, SCALE is overwritten with the value  scl . */

/*  SUMSQ   (input/output) DOUBLE PRECISION */
/*          On entry, the value  sumsq  in the equation above. */
/*          On exit, SUMSQ is overwritten with the value  ssq . */

/* ===================================================================== */

/*     .. Parameters .. */
/*<       DOUBLE PRECISION   ZERO >*/
/*<       PARAMETER          ( ZERO = 0.0D+0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       INTEGER            IX >*/
/*<       DOUBLE PRECISION   TEMP1 >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          ABS, DBLE, DIMAG >*/
/*     .. */
/*     .. Executable Statements .. */

/*<       IF( N.GT.0 ) THEN >*/
    /* Parameter adjustments */
    --x;

    /* Function Body */
    if (*n > 0) {
/*<          DO 10 IX = 1, 1 + ( N-1 )*INCX, INCX >*/
        i__1 = (*n - 1) * *incx + 1;
        i__2 = *incx;
        for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) {
/*<             IF( DBLE( X( IX ) ).NE.ZERO ) THEN >*/
            i__3 = ix;
            if (x[i__3].r != 0.) {
/*<                TEMP1 = ABS( DBLE( X( IX ) ) ) >*/
                i__3 = ix;
                temp1 = (d__1 = x[i__3].r, abs(d__1));
/*<                IF( SCALE.LT.TEMP1 ) THEN >*/
                if (*scale < temp1) {
/*<                   SUMSQ = 1 + SUMSQ*( SCALE / TEMP1 )**2 >*/
/* Computing 2nd power */
                    d__1 = *scale / temp1;
                    *sumsq = *sumsq * (d__1 * d__1) + 1;
/*<                   SCALE = TEMP1 >*/
                    *scale = temp1;
/*<                ELSE >*/
                } else {
/*<                   SUMSQ = SUMSQ + ( TEMP1 / SCALE )**2 >*/
/* Computing 2nd power */
                    d__1 = temp1 / *scale;
                    *sumsq += d__1 * d__1;
/*<                END IF >*/
                }
/*<             END IF >*/
            }
/*<             IF( DIMAG( X( IX ) ).NE.ZERO ) THEN >*/
            if (d_imag(&x[ix]) != 0.) {
/*<                TEMP1 = ABS( DIMAG( X( IX ) ) ) >*/
                temp1 = (d__1 = d_imag(&x[ix]), abs(d__1));
/*<                IF( SCALE.LT.TEMP1 ) THEN >*/
                if (*scale < temp1) {
/*<                   SUMSQ = 1 + SUMSQ*( SCALE / TEMP1 )**2 >*/
/* Computing 2nd power */
                    d__1 = *scale / temp1;
                    *sumsq = *sumsq * (d__1 * d__1) + 1;
/*<                   SCALE = TEMP1 >*/
                    *scale = temp1;
/*<                ELSE >*/
                } else {
/*<                   SUMSQ = SUMSQ + ( TEMP1 / SCALE )**2 >*/
/* Computing 2nd power */
                    d__1 = temp1 / *scale;
                    *sumsq += d__1 * d__1;
/*<                END IF >*/
                }
/*<             END IF >*/
            }
/*<    10    CONTINUE >*/
/* L10: */
        }
/*<       END IF >*/
    }

/*<       RETURN >*/
    return 0;

/*     End of ZLASSQ */

/*<       END >*/
} /* zlassq_ */

#ifdef __cplusplus
        }
#endif