1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
/* lapack/double/dgecon.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
/*< >*/
/* Subroutine */ int dgecon_(char *norm, integer *n, doublereal *a, integer *
lda, doublereal *anorm, doublereal *rcond, doublereal *work, integer *
iwork, integer *info, ftnlen norm_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1;
doublereal d__1;
/* Local variables */
doublereal sl;
integer ix;
doublereal su;
integer kase, kase1;
doublereal scale;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int drscl_(integer *, doublereal *, doublereal *,
integer *);
extern doublereal dlamch_(char *, ftnlen);
extern /* Subroutine */ int dlacon_(integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *);
extern integer idamax_(integer *, doublereal *, integer *);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
doublereal ainvnm;
extern /* Subroutine */ int dlatrs_(char *, char *, char *, char *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen);
logical onenrm;
char normin[1];
doublereal smlnum;
(void)norm_len;
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* February 29, 1992 */
/* .. Scalar Arguments .. */
/*< CHARACTER NORM >*/
/*< INTEGER INFO, LDA, N >*/
/*< DOUBLE PRECISION ANORM, RCOND >*/
/* .. */
/* .. Array Arguments .. */
/*< INTEGER IWORK( * ) >*/
/*< DOUBLE PRECISION A( LDA, * ), WORK( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* DGECON estimates the reciprocal of the condition number of a general */
/* real matrix A, in either the 1-norm or the infinity-norm, using */
/* the LU factorization computed by DGETRF. */
/* An estimate is obtained for norm(inv(A)), and the reciprocal of the */
/* condition number is computed as */
/* RCOND = 1 / ( norm(A) * norm(inv(A)) ). */
/* Arguments */
/* ========= */
/* NORM (input) CHARACTER*1 */
/* Specifies whether the 1-norm condition number or the */
/* infinity-norm condition number is required: */
/* = '1' or 'O': 1-norm; */
/* = 'I': Infinity-norm. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
/* The factors L and U from the factorization A = P*L*U */
/* as computed by DGETRF. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* ANORM (input) DOUBLE PRECISION */
/* If NORM = '1' or 'O', the 1-norm of the original matrix A. */
/* If NORM = 'I', the infinity-norm of the original matrix A. */
/* RCOND (output) DOUBLE PRECISION */
/* The reciprocal of the condition number of the matrix A, */
/* computed as RCOND = 1/(norm(A) * norm(inv(A))). */
/* WORK (workspace) DOUBLE PRECISION array, dimension (4*N) */
/* IWORK (workspace) INTEGER array, dimension (N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ONE, ZERO >*/
/*< PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL ONENRM >*/
/*< CHARACTER NORMIN >*/
/*< INTEGER IX, KASE, KASE1 >*/
/*< DOUBLE PRECISION AINVNM, SCALE, SL, SMLNUM, SU >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< INTEGER IDAMAX >*/
/*< DOUBLE PRECISION DLAMCH >*/
/*< EXTERNAL LSAME, IDAMAX, DLAMCH >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL DLACON, DLATRS, DRSCL, XERBLA >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, MAX >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--work;
--iwork;
/* Function Body */
*info = 0;
/*< ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' ) >*/
onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O", (ftnlen)1, (
ftnlen)1);
/*< IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN >*/
if (! onenrm && ! lsame_(norm, "I", (ftnlen)1, (ftnlen)1)) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( LDA.LT.MAX( 1, N ) ) THEN >*/
} else if (*lda < max(1,*n)) {
/*< INFO = -4 >*/
*info = -4;
/*< ELSE IF( ANORM.LT.ZERO ) THEN >*/
} else if (*anorm < 0.) {
/*< INFO = -5 >*/
*info = -5;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'DGECON', -INFO ) >*/
i__1 = -(*info);
xerbla_("DGECON", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible */
/*< RCOND = ZERO >*/
*rcond = 0.;
/*< IF( N.EQ.0 ) THEN >*/
if (*n == 0) {
/*< RCOND = ONE >*/
*rcond = 1.;
/*< RETURN >*/
return 0;
/*< ELSE IF( ANORM.EQ.ZERO ) THEN >*/
} else if (*anorm == 0.) {
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/*< SMLNUM = DLAMCH( 'Safe minimum' ) >*/
smlnum = dlamch_("Safe minimum", (ftnlen)12);
/* Estimate the norm of inv(A). */
/*< AINVNM = ZERO >*/
ainvnm = 0.;
/*< NORMIN = 'N' >*/
*(unsigned char *)normin = 'N';
/*< IF( ONENRM ) THEN >*/
if (onenrm) {
/*< KASE1 = 1 >*/
kase1 = 1;
/*< ELSE >*/
} else {
/*< KASE1 = 2 >*/
kase1 = 2;
/*< END IF >*/
}
/*< KASE = 0 >*/
kase = 0;
/*< 10 CONTINUE >*/
L10:
/*< CALL DLACON( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE ) >*/
dlacon_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase);
/*< IF( KASE.NE.0 ) THEN >*/
if (kase != 0) {
/*< IF( KASE.EQ.KASE1 ) THEN >*/
if (kase == kase1) {
/* Multiply by inv(L). */
/*< >*/
dlatrs_("Lower", "No transpose", "Unit", normin, n, &a[a_offset],
lda, &work[1], &sl, &work[(*n << 1) + 1], info, (ftnlen)5,
(ftnlen)12, (ftnlen)4, (ftnlen)1);
/* Multiply by inv(U). */
/*< >*/
dlatrs_("Upper", "No transpose", "Non-unit", normin, n, &a[
a_offset], lda, &work[1], &su, &work[*n * 3 + 1], info, (
ftnlen)5, (ftnlen)12, (ftnlen)8, (ftnlen)1);
/*< ELSE >*/
} else {
/* Multiply by inv(U'). */
/*< >*/
dlatrs_("Upper", "Transpose", "Non-unit", normin, n, &a[a_offset],
lda, &work[1], &su, &work[*n * 3 + 1], info, (ftnlen)5, (
ftnlen)9, (ftnlen)8, (ftnlen)1);
/* Multiply by inv(L'). */
/*< >*/
dlatrs_("Lower", "Transpose", "Unit", normin, n, &a[a_offset],
lda, &work[1], &sl, &work[(*n << 1) + 1], info, (ftnlen)5,
(ftnlen)9, (ftnlen)4, (ftnlen)1);
/*< END IF >*/
}
/* Divide X by 1/(SL*SU) if doing so will not cause overflow. */
/*< SCALE = SL*SU >*/
scale = sl * su;
/*< NORMIN = 'Y' >*/
*(unsigned char *)normin = 'Y';
/*< IF( SCALE.NE.ONE ) THEN >*/
if (scale != 1.) {
/*< IX = IDAMAX( N, WORK, 1 ) >*/
ix = idamax_(n, &work[1], &c__1);
/*< >*/
if (scale < (d__1 = work[ix], abs(d__1)) * smlnum || scale == 0.)
{
goto L20;
}
/*< CALL DRSCL( N, SCALE, WORK, 1 ) >*/
drscl_(n, &scale, &work[1], &c__1);
/*< END IF >*/
}
/*< GO TO 10 >*/
goto L10;
/*< END IF >*/
}
/* Compute the estimate of the reciprocal condition number. */
/*< >*/
if (ainvnm != 0.) {
*rcond = 1. / ainvnm / *anorm;
}
/*< 20 CONTINUE >*/
L20:
/*< RETURN >*/
return 0;
/* End of DGECON */
/*< END >*/
} /* dgecon_ */
#ifdef __cplusplus
}
#endif
|