1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
/* lapack/double/dgetc2.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b10 = -1.;
/*< SUBROUTINE DGETC2( N, A, LDA, IPIV, JPIV, INFO ) >*/
/* Subroutine */ int dgetc2_(integer *n, doublereal *a, integer *lda, integer
*ipiv, integer *jpiv, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublereal d__1;
/* Local variables */
integer i__, j, ip, jp;
doublereal eps;
integer ipv=0, jpv=0;
extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *);
doublereal smin=0, xmax;
extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
doublereal *, integer *), dlabad_(doublereal *, doublereal *);
extern doublereal dlamch_(char *, ftnlen);
doublereal bignum, smlnum;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* .. Scalar Arguments .. */
/*< INTEGER INFO, LDA, N >*/
/* .. */
/* .. Array Arguments .. */
/*< INTEGER IPIV( * ), JPIV( * ) >*/
/*< DOUBLE PRECISION A( LDA, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* DGETC2 computes an LU factorization with complete pivoting of the */
/* n-by-n matrix A. The factorization has the form A = P * L * U * Q, */
/* where P and Q are permutation matrices, L is lower triangular with */
/* unit diagonal elements and U is upper triangular. */
/* This is the Level 2 BLAS algorithm. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
/* On entry, the n-by-n matrix A to be factored. */
/* On exit, the factors L and U from the factorization */
/* A = P*L*U*Q; the unit diagonal elements of L are not stored. */
/* If U(k, k) appears to be less than SMIN, U(k, k) is given the */
/* value of SMIN, i.e., giving a nonsingular perturbed system. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* IPIV (output) INTEGER array, dimension(N). */
/* The pivot indices; for 1 <= i <= N, row i of the */
/* matrix has been interchanged with row IPIV(i). */
/* JPIV (output) INTEGER array, dimension(N). */
/* The pivot indices; for 1 <= j <= N, column j of the */
/* matrix has been interchanged with column JPIV(j). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* > 0: if INFO = k, U(k, k) is likely to produce owerflow if */
/* we try to solve for x in Ax = b. So U is perturbed to */
/* avoid the overflow. */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/* Umea University, S-901 87 Umea, Sweden. */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ZERO, ONE >*/
/*< PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< INTEGER I, IP, IPV, J, JP, JPV >*/
/*< DOUBLE PRECISION BIGNUM, EPS, SMIN, SMLNUM, XMAX >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL DGER, DSWAP >*/
/* .. */
/* .. External Functions .. */
/*< DOUBLE PRECISION DLAMCH >*/
/*< EXTERNAL DLAMCH >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, MAX >*/
/* .. */
/* .. Executable Statements .. */
/* Set constants to control overflow */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--ipiv;
--jpiv;
/* Function Body */
*info = 0;
/*< EPS = DLAMCH( 'P' ) >*/
eps = dlamch_("P", (ftnlen)1);
/*< SMLNUM = DLAMCH( 'S' ) / EPS >*/
smlnum = dlamch_("S", (ftnlen)1) / eps;
/*< BIGNUM = ONE / SMLNUM >*/
bignum = 1. / smlnum;
/*< CALL DLABAD( SMLNUM, BIGNUM ) >*/
dlabad_(&smlnum, &bignum);
/* Factorize A using complete pivoting. */
/* Set pivots less than SMIN to SMIN. */
/*< DO 40 I = 1, N - 1 >*/
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Find max element in matrix A */
/*< XMAX = ZERO >*/
xmax = 0.;
/*< DO 20 IP = I, N >*/
i__2 = *n;
for (ip = i__; ip <= i__2; ++ip) {
/*< DO 10 JP = I, N >*/
i__3 = *n;
for (jp = i__; jp <= i__3; ++jp) {
/*< IF( ABS( A( IP, JP ) ).GE.XMAX ) THEN >*/
if ((d__1 = a[ip + jp * a_dim1], abs(d__1)) >= xmax) {
/*< XMAX = ABS( A( IP, JP ) ) >*/
xmax = (d__1 = a[ip + jp * a_dim1], abs(d__1));
/*< IPV = IP >*/
ipv = ip;
/*< JPV = JP >*/
jpv = jp;
/*< END IF >*/
}
/*< 10 CONTINUE >*/
/* L10: */
}
/*< 20 CONTINUE >*/
/* L20: */
}
/*< >*/
if (i__ == 1) {
/* Computing MAX */
d__1 = eps * xmax;
smin = max(d__1,smlnum);
}
/* Swap rows */
/*< >*/
if (ipv != i__) {
dswap_(n, &a[ipv + a_dim1], lda, &a[i__ + a_dim1], lda);
}
/*< IPIV( I ) = IPV >*/
ipiv[i__] = ipv;
/* Swap columns */
/*< >*/
if (jpv != i__) {
dswap_(n, &a[jpv * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
c__1);
}
/*< JPIV( I ) = JPV >*/
jpiv[i__] = jpv;
/* Check for singularity */
/*< IF( ABS( A( I, I ) ).LT.SMIN ) THEN >*/
if ((d__1 = a[i__ + i__ * a_dim1], abs(d__1)) < smin) {
/*< INFO = I >*/
*info = i__;
/*< A( I, I ) = SMIN >*/
a[i__ + i__ * a_dim1] = smin;
/*< END IF >*/
}
/*< DO 30 J = I + 1, N >*/
i__2 = *n;
for (j = i__ + 1; j <= i__2; ++j) {
/*< A( J, I ) = A( J, I ) / A( I, I ) >*/
a[j + i__ * a_dim1] /= a[i__ + i__ * a_dim1];
/*< 30 CONTINUE >*/
/* L30: */
}
/*< >*/
i__2 = *n - i__;
i__3 = *n - i__;
dger_(&i__2, &i__3, &c_b10, &a[i__ + 1 + i__ * a_dim1], &c__1, &a[i__
+ (i__ + 1) * a_dim1], lda, &a[i__ + 1 + (i__ + 1) * a_dim1],
lda);
/*< 40 CONTINUE >*/
/* L40: */
}
/*< IF( ABS( A( N, N ) ).LT.SMIN ) THEN >*/
if ((d__1 = a[*n + *n * a_dim1], abs(d__1)) < smin) {
/*< INFO = N >*/
*info = *n;
/*< A( N, N ) = SMIN >*/
a[*n + *n * a_dim1] = smin;
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of DGETC2 */
/*< END >*/
} /* dgetc2_ */
#ifdef __cplusplus
}
#endif
|