File: dgetc2.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (254 lines) | stat: -rw-r--r-- 7,900 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/* lapack/double/dgetc2.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__1 = 1;
static doublereal c_b10 = -1.;

/*<       SUBROUTINE DGETC2( N, A, LDA, IPIV, JPIV, INFO ) >*/
/* Subroutine */ int dgetc2_(integer *n, doublereal *a, integer *lda, integer 
        *ipiv, integer *jpiv, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    doublereal d__1;

    /* Local variables */
    integer i__, j, ip, jp;
    doublereal eps;
    integer ipv=0, jpv=0;
    extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 
            doublereal *, integer *, doublereal *, integer *, doublereal *, 
            integer *);
    doublereal smin=0, xmax;
    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
            doublereal *, integer *), dlabad_(doublereal *, doublereal *);
    extern doublereal dlamch_(char *, ftnlen);
    doublereal bignum, smlnum;


/*  -- LAPACK auxiliary routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     June 30, 1999 */

/*     .. Scalar Arguments .. */
/*<       INTEGER            INFO, LDA, N >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       INTEGER            IPIV( * ), JPIV( * ) >*/
/*<       DOUBLE PRECISION   A( LDA, * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGETC2 computes an LU factorization with complete pivoting of the */
/*  n-by-n matrix A. The factorization has the form A = P * L * U * Q, */
/*  where P and Q are permutation matrices, L is lower triangular with */
/*  unit diagonal elements and U is upper triangular. */

/*  This is the Level 2 BLAS algorithm. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix A. N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
/*          On entry, the n-by-n matrix A to be factored. */
/*          On exit, the factors L and U from the factorization */
/*          A = P*L*U*Q; the unit diagonal elements of L are not stored. */
/*          If U(k, k) appears to be less than SMIN, U(k, k) is given the */
/*          value of SMIN, i.e., giving a nonsingular perturbed system. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  IPIV    (output) INTEGER array, dimension(N). */
/*          The pivot indices; for 1 <= i <= N, row i of the */
/*          matrix has been interchanged with row IPIV(i). */

/*  JPIV    (output) INTEGER array, dimension(N). */
/*          The pivot indices; for 1 <= j <= N, column j of the */
/*          matrix has been interchanged with column JPIV(j). */

/*  INFO    (output) INTEGER */
/*           = 0: successful exit */
/*           > 0: if INFO = k, U(k, k) is likely to produce owerflow if */
/*                we try to solve for x in Ax = b. So U is perturbed to */
/*                avoid the overflow. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/*     Umea University, S-901 87 Umea, Sweden. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*<       DOUBLE PRECISION   ZERO, ONE >*/
/*<       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       INTEGER            I, IP, IPV, J, JP, JPV >*/
/*<       DOUBLE PRECISION   BIGNUM, EPS, SMIN, SMLNUM, XMAX >*/
/*     .. */
/*     .. External Subroutines .. */
/*<       EXTERNAL           DGER, DSWAP >*/
/*     .. */
/*     .. External Functions .. */
/*<       DOUBLE PRECISION   DLAMCH >*/
/*<       EXTERNAL           DLAMCH >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          ABS, MAX >*/
/*     .. */
/*     .. Executable Statements .. */

/*     Set constants to control overflow */

/*<       INFO = 0 >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;
    --jpiv;

    /* Function Body */
    *info = 0;
/*<       EPS = DLAMCH( 'P' ) >*/
    eps = dlamch_("P", (ftnlen)1);
/*<       SMLNUM = DLAMCH( 'S' ) / EPS >*/
    smlnum = dlamch_("S", (ftnlen)1) / eps;
/*<       BIGNUM = ONE / SMLNUM >*/
    bignum = 1. / smlnum;
/*<       CALL DLABAD( SMLNUM, BIGNUM ) >*/
    dlabad_(&smlnum, &bignum);

/*     Factorize A using complete pivoting. */
/*     Set pivots less than SMIN to SMIN. */

/*<       DO 40 I = 1, N - 1 >*/
    i__1 = *n - 1;
    for (i__ = 1; i__ <= i__1; ++i__) {

/*        Find max element in matrix A */

/*<          XMAX = ZERO >*/
        xmax = 0.;
/*<          DO 20 IP = I, N >*/
        i__2 = *n;
        for (ip = i__; ip <= i__2; ++ip) {
/*<             DO 10 JP = I, N >*/
            i__3 = *n;
            for (jp = i__; jp <= i__3; ++jp) {
/*<                IF( ABS( A( IP, JP ) ).GE.XMAX ) THEN >*/
                if ((d__1 = a[ip + jp * a_dim1], abs(d__1)) >= xmax) {
/*<                   XMAX = ABS( A( IP, JP ) ) >*/
                    xmax = (d__1 = a[ip + jp * a_dim1], abs(d__1));
/*<                   IPV = IP >*/
                    ipv = ip;
/*<                   JPV = JP >*/
                    jpv = jp;
/*<                END IF >*/
                }
/*<    10       CONTINUE >*/
/* L10: */
            }
/*<    20    CONTINUE >*/
/* L20: */
        }
/*<    >*/
        if (i__ == 1) {
/* Computing MAX */
            d__1 = eps * xmax;
            smin = max(d__1,smlnum);
        }

/*        Swap rows */

/*<    >*/
        if (ipv != i__) {
            dswap_(n, &a[ipv + a_dim1], lda, &a[i__ + a_dim1], lda);
        }
/*<          IPIV( I ) = IPV >*/
        ipiv[i__] = ipv;

/*        Swap columns */

/*<    >*/
        if (jpv != i__) {
            dswap_(n, &a[jpv * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
                    c__1);
        }
/*<          JPIV( I ) = JPV >*/
        jpiv[i__] = jpv;

/*        Check for singularity */

/*<          IF( ABS( A( I, I ) ).LT.SMIN ) THEN >*/
        if ((d__1 = a[i__ + i__ * a_dim1], abs(d__1)) < smin) {
/*<             INFO = I >*/
            *info = i__;
/*<             A( I, I ) = SMIN >*/
            a[i__ + i__ * a_dim1] = smin;
/*<          END IF >*/
        }
/*<          DO 30 J = I + 1, N >*/
        i__2 = *n;
        for (j = i__ + 1; j <= i__2; ++j) {
/*<             A( J, I ) = A( J, I ) / A( I, I ) >*/
            a[j + i__ * a_dim1] /= a[i__ + i__ * a_dim1];
/*<    30    CONTINUE >*/
/* L30: */
        }
/*<    >*/
        i__2 = *n - i__;
        i__3 = *n - i__;
        dger_(&i__2, &i__3, &c_b10, &a[i__ + 1 + i__ * a_dim1], &c__1, &a[i__ 
                + (i__ + 1) * a_dim1], lda, &a[i__ + 1 + (i__ + 1) * a_dim1], 
                lda);
/*<    40 CONTINUE >*/
/* L40: */
    }

/*<       IF( ABS( A( N, N ) ).LT.SMIN ) THEN >*/
    if ((d__1 = a[*n + *n * a_dim1], abs(d__1)) < smin) {
/*<          INFO = N >*/
        *info = *n;
/*<          A( N, N ) = SMIN >*/
        a[*n + *n * a_dim1] = smin;
/*<       END IF >*/
    }

/*<       RETURN >*/
    return 0;

/*     End of DGETC2 */

/*<       END >*/
} /* dgetc2_ */

#ifdef __cplusplus
        }
#endif