1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
/* lapack/double/dggbak.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< >*/
/* Subroutine */ int dggbak_(char *job, char *side, integer *n, integer *ilo,
integer *ihi, doublereal *lscale, doublereal *rscale, integer *m,
doublereal *v, integer *ldv, integer *info, ftnlen job_len, ftnlen
side_len)
{
/* System generated locals */
integer v_dim1, v_offset, i__1;
/* Local variables */
integer i__, k;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
doublereal *, integer *);
logical leftv;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
logical rightv;
(void)job_len;
(void)side_len;
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* September 30, 1994 */
/* .. Scalar Arguments .. */
/*< CHARACTER JOB, SIDE >*/
/*< INTEGER IHI, ILO, INFO, LDV, M, N >*/
/* .. */
/* .. Array Arguments .. */
/*< DOUBLE PRECISION LSCALE( * ), RSCALE( * ), V( LDV, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* DGGBAK forms the right or left eigenvectors of a real generalized */
/* eigenvalue problem A*x = lambda*B*x, by backward transformation on */
/* the computed eigenvectors of the balanced pair of matrices output by */
/* DGGBAL. */
/* Arguments */
/* ========= */
/* JOB (input) CHARACTER*1 */
/* Specifies the type of backward transformation required: */
/* = 'N': do nothing, return immediately; */
/* = 'P': do backward transformation for permutation only; */
/* = 'S': do backward transformation for scaling only; */
/* = 'B': do backward transformations for both permutation and */
/* scaling. */
/* JOB must be the same as the argument JOB supplied to DGGBAL. */
/* SIDE (input) CHARACTER*1 */
/* = 'R': V contains right eigenvectors; */
/* = 'L': V contains left eigenvectors. */
/* N (input) INTEGER */
/* The number of rows of the matrix V. N >= 0. */
/* ILO (input) INTEGER */
/* IHI (input) INTEGER */
/* The integers ILO and IHI determined by DGGBAL. */
/* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
/* LSCALE (input) DOUBLE PRECISION array, dimension (N) */
/* Details of the permutations and/or scaling factors applied */
/* to the left side of A and B, as returned by DGGBAL. */
/* RSCALE (input) DOUBLE PRECISION array, dimension (N) */
/* Details of the permutations and/or scaling factors applied */
/* to the right side of A and B, as returned by DGGBAL. */
/* M (input) INTEGER */
/* The number of columns of the matrix V. M >= 0. */
/* V (input/output) DOUBLE PRECISION array, dimension (LDV,M) */
/* On entry, the matrix of right or left eigenvectors to be */
/* transformed, as returned by DTGEVC. */
/* On exit, V is overwritten by the transformed eigenvectors. */
/* LDV (input) INTEGER */
/* The leading dimension of the matrix V. LDV >= max(1,N). */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* Further Details */
/* =============== */
/* See R.C. Ward, Balancing the generalized eigenvalue problem, */
/* SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. */
/* ===================================================================== */
/* .. Local Scalars .. */
/*< LOGICAL LEFTV, RIGHTV >*/
/*< INTEGER I, K >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL DSCAL, DSWAP, XERBLA >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC MAX >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters */
/*< RIGHTV = LSAME( SIDE, 'R' ) >*/
/* Parameter adjustments */
--lscale;
--rscale;
v_dim1 = *ldv;
v_offset = 1 + v_dim1;
v -= v_offset;
/* Function Body */
rightv = lsame_(side, "R", (ftnlen)1, (ftnlen)1);
/*< LEFTV = LSAME( SIDE, 'L' ) >*/
leftv = lsame_(side, "L", (ftnlen)1, (ftnlen)1);
/*< INFO = 0 >*/
*info = 0;
/*< >*/
if (! lsame_(job, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(job, "P", (
ftnlen)1, (ftnlen)1) && ! lsame_(job, "S", (ftnlen)1, (ftnlen)1)
&& ! lsame_(job, "B", (ftnlen)1, (ftnlen)1)) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN >*/
} else if (! rightv && ! leftv) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -3 >*/
*info = -3;
/*< ELSE IF( ILO.LT.1 ) THEN >*/
} else if (*ilo < 1) {
/*< INFO = -4 >*/
*info = -4;
/*< ELSE IF( IHI.LT.ILO .OR. IHI.GT.MAX( 1, N ) ) THEN >*/
} else if (*ihi < *ilo || *ihi > max(1,*n)) {
/*< INFO = -5 >*/
*info = -5;
/*< ELSE IF( M.LT.0 ) THEN >*/
} else if (*m < 0) {
/*< INFO = -6 >*/
*info = -6;
/*< ELSE IF( LDV.LT.MAX( 1, N ) ) THEN >*/
} else if (*ldv < max(1,*n)) {
/*< INFO = -10 >*/
*info = -10;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'DGGBAK', -INFO ) >*/
i__1 = -(*info);
xerbla_("DGGBAK", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible */
/*< >*/
if (*n == 0) {
return 0;
}
/*< >*/
if (*m == 0) {
return 0;
}
/*< >*/
if (lsame_(job, "N", (ftnlen)1, (ftnlen)1)) {
return 0;
}
/*< >*/
if (*ilo == *ihi) {
goto L30;
}
/* Backward balance */
/*< IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN >*/
if (lsame_(job, "S", (ftnlen)1, (ftnlen)1) || lsame_(job, "B", (ftnlen)1,
(ftnlen)1)) {
/* Backward transformation on right eigenvectors */
/*< IF( RIGHTV ) THEN >*/
if (rightv) {
/*< DO 10 I = ILO, IHI >*/
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
/*< CALL DSCAL( M, RSCALE( I ), V( I, 1 ), LDV ) >*/
dscal_(m, &rscale[i__], &v[i__ + v_dim1], ldv);
/*< 10 CONTINUE >*/
/* L10: */
}
/*< END IF >*/
}
/* Backward transformation on left eigenvectors */
/*< IF( LEFTV ) THEN >*/
if (leftv) {
/*< DO 20 I = ILO, IHI >*/
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
/*< CALL DSCAL( M, LSCALE( I ), V( I, 1 ), LDV ) >*/
dscal_(m, &lscale[i__], &v[i__ + v_dim1], ldv);
/*< 20 CONTINUE >*/
/* L20: */
}
/*< END IF >*/
}
/*< END IF >*/
}
/* Backward permutation */
/*< 30 CONTINUE >*/
L30:
/*< IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN >*/
if (lsame_(job, "P", (ftnlen)1, (ftnlen)1) || lsame_(job, "B", (ftnlen)1,
(ftnlen)1)) {
/* Backward permutation on right eigenvectors */
/*< IF( RIGHTV ) THEN >*/
if (rightv) {
/*< >*/
if (*ilo == 1) {
goto L50;
}
/*< DO 40 I = ILO - 1, 1, -1 >*/
for (i__ = *ilo - 1; i__ >= 1; --i__) {
/*< K = RSCALE( I ) >*/
k = (integer) rscale[i__];
/*< >*/
if (k == i__) {
goto L40;
}
/*< CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV ) >*/
dswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);
/*< 40 CONTINUE >*/
L40:
;
}
/*< 50 CONTINUE >*/
L50:
/*< >*/
if (*ihi == *n) {
goto L70;
}
/*< DO 60 I = IHI + 1, N >*/
i__1 = *n;
for (i__ = *ihi + 1; i__ <= i__1; ++i__) {
/*< K = RSCALE( I ) >*/
k = (integer) rscale[i__];
/*< >*/
if (k == i__) {
goto L60;
}
/*< CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV ) >*/
dswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);
/*< 60 CONTINUE >*/
L60:
;
}
/*< END IF >*/
}
/* Backward permutation on left eigenvectors */
/*< 70 CONTINUE >*/
L70:
/*< IF( LEFTV ) THEN >*/
if (leftv) {
/*< >*/
if (*ilo == 1) {
goto L90;
}
/*< DO 80 I = ILO - 1, 1, -1 >*/
for (i__ = *ilo - 1; i__ >= 1; --i__) {
/*< K = LSCALE( I ) >*/
k = (integer) lscale[i__];
/*< >*/
if (k == i__) {
goto L80;
}
/*< CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV ) >*/
dswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);
/*< 80 CONTINUE >*/
L80:
;
}
/*< 90 CONTINUE >*/
L90:
/*< >*/
if (*ihi == *n) {
goto L110;
}
/*< DO 100 I = IHI + 1, N >*/
i__1 = *n;
for (i__ = *ihi + 1; i__ <= i__1; ++i__) {
/*< K = LSCALE( I ) >*/
k = (integer) lscale[i__];
/*< >*/
if (k == i__) {
goto L100;
}
/*< CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV ) >*/
dswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);
/*< 100 CONTINUE >*/
L100:
;
}
/*< END IF >*/
}
/*< END IF >*/
}
/*< 110 CONTINUE >*/
L110:
/*< RETURN >*/
return 0;
/* End of DGGBAK */
/*< END >*/
} /* dggbak_ */
#ifdef __cplusplus
}
#endif
|