1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
/* lapack/double/dlacon.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <stdio.h> /* fprintf */
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b11 = 1.;
/*< SUBROUTINE DLACON( N, V, X, ISGN, EST, KASE ) >*/
/* Subroutine */ int dlacon_(integer *n, doublereal *v, doublereal *x,
integer *isgn, doublereal *est, integer *kase)
{
/* System generated locals */
integer i__1;
doublereal d__1;
/* Builtin functions */
double d_sign(doublereal *, doublereal *);
integer i_dnnt(doublereal *);
/* Local variables */
static integer i__, j, iter;
static doublereal temp;
static integer jump;
extern doublereal dasum_(integer *, doublereal *, integer *);
static integer jlast;
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *);
extern integer idamax_(integer *, doublereal *, integer *);
static doublereal altsgn, estold;
fprintf(stderr,
"WARNING: dlacon_ has not been converted for thread safety "
"because the vnl test suite does not manage to call it "
"through dgges. Please send the case for which you get this "
"message to the vxl-users mailing list:\n"
"https://lists.sourceforge.net/lists/listinfo/vxl-users\n\n");
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* February 29, 1992 */
/* .. Scalar Arguments .. */
/*< INTEGER KASE, N >*/
/*< DOUBLE PRECISION EST >*/
/* .. */
/* .. Array Arguments .. */
/*< INTEGER ISGN( * ) >*/
/*< DOUBLE PRECISION V( * ), X( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* DLACON estimates the 1-norm of a square, real matrix A. */
/* Reverse communication is used for evaluating matrix-vector products. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the matrix. N >= 1. */
/* V (workspace) DOUBLE PRECISION array, dimension (N) */
/* On the final return, V = A*W, where EST = norm(V)/norm(W) */
/* (W is not returned). */
/* X (input/output) DOUBLE PRECISION array, dimension (N) */
/* On an intermediate return, X should be overwritten by */
/* A * X, if KASE=1, */
/* A' * X, if KASE=2, */
/* and DLACON must be re-called with all the other parameters */
/* unchanged. */
/* ISGN (workspace) INTEGER array, dimension (N) */
/* EST (output) DOUBLE PRECISION */
/* An estimate (a lower bound) for norm(A). */
/* KASE (input/output) INTEGER */
/* On the initial call to DLACON, KASE should be 0. */
/* On an intermediate return, KASE will be 1 or 2, indicating */
/* whether X should be overwritten by A * X or A' * X. */
/* On the final return from DLACON, KASE will again be 0. */
/* Further Details */
/* ======= ======= */
/* Contributed by Nick Higham, University of Manchester. */
/* Originally named SONEST, dated March 16, 1988. */
/* Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of */
/* a real or complex matrix, with applications to condition estimation", */
/* ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988. */
/* ===================================================================== */
/* .. Parameters .. */
/*< INTEGER ITMAX >*/
/*< PARAMETER ( ITMAX = 5 ) >*/
/*< DOUBLE PRECISION ZERO, ONE, TWO >*/
/*< PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< INTEGER I, ITER, J, JLAST, JUMP >*/
/*< DOUBLE PRECISION ALTSGN, ESTOLD, TEMP >*/
/* .. */
/* .. External Functions .. */
/*< INTEGER IDAMAX >*/
/*< DOUBLE PRECISION DASUM >*/
/*< EXTERNAL IDAMAX, DASUM >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL DCOPY >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, DBLE, NINT, SIGN >*/
/* .. */
/* .. Save statement .. */
/*< SAVE >*/
/* .. */
/* .. Executable Statements .. */
/*< IF( KASE.EQ.0 ) THEN >*/
/* Parameter adjustments */
--isgn;
--x;
--v;
/* Function Body */
if (*kase == 0) {
/*< DO 10 I = 1, N >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< X( I ) = ONE / DBLE( N ) >*/
x[i__] = 1. / (doublereal) (*n);
/*< 10 CONTINUE >*/
/* L10: */
}
/*< KASE = 1 >*/
*kase = 1;
/*< JUMP = 1 >*/
jump = 1;
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/*< GO TO ( 20, 40, 70, 110, 140 )JUMP >*/
switch (jump) {
case 1: goto L20;
case 2: goto L40;
case 3: goto L70;
case 4: goto L110;
case 5: goto L140;
}
/* ................ ENTRY (JUMP = 1) */
/* FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X. */
/*< 20 CONTINUE >*/
L20:
/*< IF( N.EQ.1 ) THEN >*/
if (*n == 1) {
/*< V( 1 ) = X( 1 ) >*/
v[1] = x[1];
/*< EST = ABS( V( 1 ) ) >*/
*est = abs(v[1]);
/* ... QUIT */
/*< GO TO 150 >*/
goto L150;
/*< END IF >*/
}
/*< EST = DASUM( N, X, 1 ) >*/
*est = dasum_(n, &x[1], &c__1);
/*< DO 30 I = 1, N >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< X( I ) = SIGN( ONE, X( I ) ) >*/
x[i__] = d_sign(&c_b11, &x[i__]);
/*< ISGN( I ) = NINT( X( I ) ) >*/
isgn[i__] = i_dnnt(&x[i__]);
/*< 30 CONTINUE >*/
/* L30: */
}
/*< KASE = 2 >*/
*kase = 2;
/*< JUMP = 2 >*/
jump = 2;
/*< RETURN >*/
return 0;
/* ................ ENTRY (JUMP = 2) */
/* FIRST ITERATION. X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X. */
/*< 40 CONTINUE >*/
L40:
/*< J = IDAMAX( N, X, 1 ) >*/
j = idamax_(n, &x[1], &c__1);
/*< ITER = 2 >*/
iter = 2;
/* MAIN LOOP - ITERATIONS 2,3,...,ITMAX. */
/*< 50 CONTINUE >*/
L50:
/*< DO 60 I = 1, N >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< X( I ) = ZERO >*/
x[i__] = 0.;
/*< 60 CONTINUE >*/
/* L60: */
}
/*< X( J ) = ONE >*/
x[j] = 1.;
/*< KASE = 1 >*/
*kase = 1;
/*< JUMP = 3 >*/
jump = 3;
/*< RETURN >*/
return 0;
/* ................ ENTRY (JUMP = 3) */
/* X HAS BEEN OVERWRITTEN BY A*X. */
/*< 70 CONTINUE >*/
L70:
/*< CALL DCOPY( N, X, 1, V, 1 ) >*/
dcopy_(n, &x[1], &c__1, &v[1], &c__1);
/*< ESTOLD = EST >*/
estold = *est;
/*< EST = DASUM( N, V, 1 ) >*/
*est = dasum_(n, &v[1], &c__1);
/*< DO 80 I = 1, N >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< >*/
d__1 = d_sign(&c_b11, &x[i__]);
if (i_dnnt(&d__1) != isgn[i__]) {
goto L90;
}
/*< 80 CONTINUE >*/
/* L80: */
}
/* REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED. */
/*< GO TO 120 >*/
goto L120;
/*< 90 CONTINUE >*/
L90:
/* TEST FOR CYCLING. */
/*< >*/
if (*est <= estold) {
goto L120;
}
/*< DO 100 I = 1, N >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< X( I ) = SIGN( ONE, X( I ) ) >*/
x[i__] = d_sign(&c_b11, &x[i__]);
/*< ISGN( I ) = NINT( X( I ) ) >*/
isgn[i__] = i_dnnt(&x[i__]);
/*< 100 CONTINUE >*/
/* L100: */
}
/*< KASE = 2 >*/
*kase = 2;
/*< JUMP = 4 >*/
jump = 4;
/*< RETURN >*/
return 0;
/* ................ ENTRY (JUMP = 4) */
/* X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X. */
/*< 110 CONTINUE >*/
L110:
/*< JLAST = J >*/
jlast = j;
/*< J = IDAMAX( N, X, 1 ) >*/
j = idamax_(n, &x[1], &c__1);
/*< IF( ( X( JLAST ).NE.ABS( X( J ) ) ) .AND. ( ITER.LT.ITMAX ) ) THEN >*/
if (x[jlast] != (d__1 = x[j], abs(d__1)) && iter < 5) {
/*< ITER = ITER + 1 >*/
++iter;
/*< GO TO 50 >*/
goto L50;
/*< END IF >*/
}
/* ITERATION COMPLETE. FINAL STAGE. */
/*< 120 CONTINUE >*/
L120:
/*< ALTSGN = ONE >*/
altsgn = 1.;
/*< DO 130 I = 1, N >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< X( I ) = ALTSGN*( ONE+DBLE( I-1 ) / DBLE( N-1 ) ) >*/
x[i__] = altsgn * ((doublereal) (i__ - 1) / (doublereal) (*n - 1) +
1.);
/*< ALTSGN = -ALTSGN >*/
altsgn = -altsgn;
/*< 130 CONTINUE >*/
/* L130: */
}
/*< KASE = 1 >*/
*kase = 1;
/*< JUMP = 5 >*/
jump = 5;
/*< RETURN >*/
return 0;
/* ................ ENTRY (JUMP = 5) */
/* X HAS BEEN OVERWRITTEN BY A*X. */
/*< 140 CONTINUE >*/
L140:
/*< TEMP = TWO*( DASUM( N, X, 1 ) / DBLE( 3*N ) ) >*/
temp = dasum_(n, &x[1], &c__1) / (doublereal) (*n * 3) * 2.;
/*< IF( TEMP.GT.EST ) THEN >*/
if (temp > *est) {
/*< CALL DCOPY( N, X, 1, V, 1 ) >*/
dcopy_(n, &x[1], &c__1, &v[1], &c__1);
/*< EST = TEMP >*/
*est = temp;
/*< END IF >*/
}
/*< 150 CONTINUE >*/
L150:
/*< KASE = 0 >*/
*kase = 0;
/*< RETURN >*/
return 0;
/* End of DLACON */
/*< END >*/
} /* dlacon_ */
#ifdef __cplusplus
}
#endif
|