1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
/* dlaev2.f -- translated by f2c (version 20060506).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 ) >*/
/* Subroutine */ int dlaev2_(doublereal *a, doublereal *b, doublereal *c__,
doublereal *rt1, doublereal *rt2, doublereal *cs1, doublereal *sn1)
{
/* System generated locals */
doublereal d__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
doublereal ab, df, cs, ct, tb, sm, tn, rt, adf, acs;
integer sgn1, sgn2;
doublereal acmn, acmx;
/* -- LAPACK auxiliary routine (version 2.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* October 31, 1992 */
/* .. Scalar Arguments .. */
/*< DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1 >*/
/* .. */
/* Purpose */
/* ======= */
/* DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix */
/* [ A B ] */
/* [ B C ]. */
/* On return, RT1 is the eigenvalue of larger absolute value, RT2 is the */
/* eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right */
/* eigenvector for RT1, giving the decomposition */
/* [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ] */
/* [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ]. */
/* Arguments */
/* ========= */
/* A (input) DOUBLE PRECISION */
/* The (1,1) element of the 2-by-2 matrix. */
/* B (input) DOUBLE PRECISION */
/* The (1,2) element and the conjugate of the (2,1) element of */
/* the 2-by-2 matrix. */
/* C (input) DOUBLE PRECISION */
/* The (2,2) element of the 2-by-2 matrix. */
/* RT1 (output) DOUBLE PRECISION */
/* The eigenvalue of larger absolute value. */
/* RT2 (output) DOUBLE PRECISION */
/* The eigenvalue of smaller absolute value. */
/* CS1 (output) DOUBLE PRECISION */
/* SN1 (output) DOUBLE PRECISION */
/* The vector (CS1, SN1) is a unit right eigenvector for RT1. */
/* Further Details */
/* =============== */
/* RT1 is accurate to a few ulps barring over/underflow. */
/* RT2 may be inaccurate if there is massive cancellation in the */
/* determinant A*C-B*B; higher precision or correctly rounded or */
/* correctly truncated arithmetic would be needed to compute RT2 */
/* accurately in all cases. */
/* CS1 and SN1 are accurate to a few ulps barring over/underflow. */
/* Overflow is possible only if RT1 is within a factor of 5 of overflow. */
/* Underflow is harmless if the input data is 0 or exceeds */
/* underflow_threshold / macheps. */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ONE >*/
/*< PARAMETER ( ONE = 1.0D0 ) >*/
/*< DOUBLE PRECISION TWO >*/
/*< PARAMETER ( TWO = 2.0D0 ) >*/
/*< DOUBLE PRECISION ZERO >*/
/*< PARAMETER ( ZERO = 0.0D0 ) >*/
/*< DOUBLE PRECISION HALF >*/
/*< PARAMETER ( HALF = 0.5D0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< INTEGER SGN1, SGN2 >*/
/*< >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, SQRT >*/
/* .. */
/* .. Executable Statements .. */
/* Compute the eigenvalues */
/*< SM = A + C >*/
sm = *a + *c__;
/*< DF = A - C >*/
df = *a - *c__;
/*< ADF = ABS( DF ) >*/
adf = abs(df);
/*< TB = B + B >*/
tb = *b + *b;
/*< AB = ABS( TB ) >*/
ab = abs(tb);
/*< IF( ABS( A ).GT.ABS( C ) ) THEN >*/
if (abs(*a) > abs(*c__)) {
/*< ACMX = A >*/
acmx = *a;
/*< ACMN = C >*/
acmn = *c__;
/*< ELSE >*/
} else {
/*< ACMX = C >*/
acmx = *c__;
/*< ACMN = A >*/
acmn = *a;
/*< END IF >*/
}
/*< IF( ADF.GT.AB ) THEN >*/
if (adf > ab) {
/*< RT = ADF*SQRT( ONE+( AB / ADF )**2 ) >*/
/* Computing 2nd power */
d__1 = ab / adf;
rt = adf * sqrt(d__1 * d__1 + 1.);
/*< ELSE IF( ADF.LT.AB ) THEN >*/
} else if (adf < ab) {
/*< RT = AB*SQRT( ONE+( ADF / AB )**2 ) >*/
/* Computing 2nd power */
d__1 = adf / ab;
rt = ab * sqrt(d__1 * d__1 + 1.);
/*< ELSE >*/
} else {
/* Includes case AB=ADF=0 */
/*< RT = AB*SQRT( TWO ) >*/
rt = ab * sqrt(2.);
/*< END IF >*/
}
/*< IF( SM.LT.ZERO ) THEN >*/
if (sm < 0.) {
/*< RT1 = HALF*( SM-RT ) >*/
*rt1 = (sm - rt) * .5;
/*< SGN1 = -1 >*/
sgn1 = -1;
/* Order of execution important. */
/* To get fully accurate smaller eigenvalue, */
/* next line needs to be executed in higher precision. */
/*< RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B >*/
*rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
/*< ELSE IF( SM.GT.ZERO ) THEN >*/
} else if (sm > 0.) {
/*< RT1 = HALF*( SM+RT ) >*/
*rt1 = (sm + rt) * .5;
/*< SGN1 = 1 >*/
sgn1 = 1;
/* Order of execution important. */
/* To get fully accurate smaller eigenvalue, */
/* next line needs to be executed in higher precision. */
/*< RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B >*/
*rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
/*< ELSE >*/
} else {
/* Includes case RT1 = RT2 = 0 */
/*< RT1 = HALF*RT >*/
*rt1 = rt * .5;
/*< RT2 = -HALF*RT >*/
*rt2 = rt * -.5;
/*< SGN1 = 1 >*/
sgn1 = 1;
/*< END IF >*/
}
/* Compute the eigenvector */
/*< IF( DF.GE.ZERO ) THEN >*/
if (df >= 0.) {
/*< CS = DF + RT >*/
cs = df + rt;
/*< SGN2 = 1 >*/
sgn2 = 1;
/*< ELSE >*/
} else {
/*< CS = DF - RT >*/
cs = df - rt;
/*< SGN2 = -1 >*/
sgn2 = -1;
/*< END IF >*/
}
/*< ACS = ABS( CS ) >*/
acs = abs(cs);
/*< IF( ACS.GT.AB ) THEN >*/
if (acs > ab) {
/*< CT = -TB / CS >*/
ct = -tb / cs;
/*< SN1 = ONE / SQRT( ONE+CT*CT ) >*/
*sn1 = 1. / sqrt(ct * ct + 1.);
/*< CS1 = CT*SN1 >*/
*cs1 = ct * *sn1;
/*< ELSE >*/
} else {
/*< IF( AB.EQ.ZERO ) THEN >*/
if (ab == 0.) {
/*< CS1 = ONE >*/
*cs1 = 1.;
/*< SN1 = ZERO >*/
*sn1 = 0.;
/*< ELSE >*/
} else {
/*< TN = -CS / TB >*/
tn = -cs / tb;
/*< CS1 = ONE / SQRT( ONE+TN*TN ) >*/
*cs1 = 1. / sqrt(tn * tn + 1.);
/*< SN1 = TN*CS1 >*/
*sn1 = tn * *cs1;
/*< END IF >*/
}
/*< END IF >*/
}
/*< IF( SGN1.EQ.SGN2 ) THEN >*/
if (sgn1 == sgn2) {
/*< TN = CS1 >*/
tn = *cs1;
/*< CS1 = -SN1 >*/
*cs1 = -(*sn1);
/*< SN1 = TN >*/
*sn1 = tn;
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of DLAEV2 */
/*< END >*/
} /* dlaev2_ */
#ifdef __cplusplus
}
#endif
|