1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
/* lapack/double/dlagv2.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__2 = 2;
static integer c__1 = 1;
/*< >*/
/* Subroutine */ int dlagv2_(doublereal *a, integer *lda, doublereal *b,
integer *ldb, doublereal *alphar, doublereal *alphai, doublereal *
beta, doublereal *csl, doublereal *snl, doublereal *csr, doublereal *
snr)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset;
doublereal d__1, d__2, d__3, d__4, d__5, d__6;
/* Local variables */
doublereal r__, t, h1, h2, h3, wi, qq, rr, wr1, wr2, ulp;
extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, doublereal *), dlag2_(
doublereal *, integer *, doublereal *, integer *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *);
doublereal anorm, bnorm, scale1, scale2;
extern /* Subroutine */ int dlasv2_(doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *);
extern doublereal dlapy2_(doublereal *, doublereal *);
doublereal ascale, bscale;
extern doublereal dlamch_(char *, ftnlen);
doublereal safmin;
extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *);
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* .. Scalar Arguments .. */
/*< INTEGER LDA, LDB >*/
/*< DOUBLE PRECISION CSL, CSR, SNL, SNR >*/
/* .. */
/* .. Array Arguments .. */
/*< >*/
/* .. */
/* Purpose */
/* ======= */
/* DLAGV2 computes the Generalized Schur factorization of a real 2-by-2 */
/* matrix pencil (A,B) where B is upper triangular. This routine */
/* computes orthogonal (rotation) matrices given by CSL, SNL and CSR, */
/* SNR such that */
/* 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 */
/* types), then */
/* [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] */
/* [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] */
/* [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] */
/* [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ], */
/* 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, */
/* then */
/* [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] */
/* [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] */
/* [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] */
/* [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ] */
/* where b11 >= b22 > 0. */
/* Arguments */
/* ========= */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA, 2) */
/* On entry, the 2 x 2 matrix A. */
/* On exit, A is overwritten by the ``A-part'' of the */
/* generalized Schur form. */
/* LDA (input) INTEGER */
/* THe leading dimension of the array A. LDA >= 2. */
/* B (input/output) DOUBLE PRECISION array, dimension (LDB, 2) */
/* On entry, the upper triangular 2 x 2 matrix B. */
/* On exit, B is overwritten by the ``B-part'' of the */
/* generalized Schur form. */
/* LDB (input) INTEGER */
/* THe leading dimension of the array B. LDB >= 2. */
/* ALPHAR (output) DOUBLE PRECISION array, dimension (2) */
/* ALPHAI (output) DOUBLE PRECISION array, dimension (2) */
/* BETA (output) DOUBLE PRECISION array, dimension (2) */
/* (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the */
/* pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may */
/* be zero. */
/* CSL (output) DOUBLE PRECISION */
/* The cosine of the left rotation matrix. */
/* SNL (output) DOUBLE PRECISION */
/* The sine of the left rotation matrix. */
/* CSR (output) DOUBLE PRECISION */
/* The cosine of the right rotation matrix. */
/* SNR (output) DOUBLE PRECISION */
/* The sine of the right rotation matrix. */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ZERO, ONE >*/
/*< PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL DLAG2, DLARTG, DLASV2, DROT >*/
/* .. */
/* .. External Functions .. */
/*< DOUBLE PRECISION DLAMCH, DLAPY2 >*/
/*< EXTERNAL DLAMCH, DLAPY2 >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, MAX >*/
/* .. */
/* .. Executable Statements .. */
/*< SAFMIN = DLAMCH( 'S' ) >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
--alphar;
--alphai;
--beta;
/* Function Body */
safmin = dlamch_("S", (ftnlen)1);
/*< ULP = DLAMCH( 'P' ) >*/
ulp = dlamch_("P", (ftnlen)1);
/* Scale A */
/*< >*/
/* Computing MAX */
d__5 = (d__1 = a[a_dim1 + 1], abs(d__1)) + (d__2 = a[a_dim1 + 2], abs(
d__2)), d__6 = (d__3 = a[(a_dim1 << 1) + 1], abs(d__3)) + (d__4 =
a[(a_dim1 << 1) + 2], abs(d__4)), d__5 = max(d__5,d__6);
anorm = max(d__5,safmin);
/*< ASCALE = ONE / ANORM >*/
ascale = 1. / anorm;
/*< A( 1, 1 ) = ASCALE*A( 1, 1 ) >*/
a[a_dim1 + 1] = ascale * a[a_dim1 + 1];
/*< A( 1, 2 ) = ASCALE*A( 1, 2 ) >*/
a[(a_dim1 << 1) + 1] = ascale * a[(a_dim1 << 1) + 1];
/*< A( 2, 1 ) = ASCALE*A( 2, 1 ) >*/
a[a_dim1 + 2] = ascale * a[a_dim1 + 2];
/*< A( 2, 2 ) = ASCALE*A( 2, 2 ) >*/
a[(a_dim1 << 1) + 2] = ascale * a[(a_dim1 << 1) + 2];
/* Scale B */
/*< >*/
/* Computing MAX */
d__4 = (d__3 = b[b_dim1 + 1], abs(d__3)), d__5 = (d__1 = b[(b_dim1 << 1)
+ 1], abs(d__1)) + (d__2 = b[(b_dim1 << 1) + 2], abs(d__2)), d__4
= max(d__4,d__5);
bnorm = max(d__4,safmin);
/*< BSCALE = ONE / BNORM >*/
bscale = 1. / bnorm;
/*< B( 1, 1 ) = BSCALE*B( 1, 1 ) >*/
b[b_dim1 + 1] = bscale * b[b_dim1 + 1];
/*< B( 1, 2 ) = BSCALE*B( 1, 2 ) >*/
b[(b_dim1 << 1) + 1] = bscale * b[(b_dim1 << 1) + 1];
/*< B( 2, 2 ) = BSCALE*B( 2, 2 ) >*/
b[(b_dim1 << 1) + 2] = bscale * b[(b_dim1 << 1) + 2];
/* Check if A can be deflated */
/*< IF( ABS( A( 2, 1 ) ).LE.ULP ) THEN >*/
if ((d__1 = a[a_dim1 + 2], abs(d__1)) <= ulp) {
/*< CSL = ONE >*/
*csl = 1.;
/*< SNL = ZERO >*/
*snl = 0.;
/*< CSR = ONE >*/
*csr = 1.;
/*< SNR = ZERO >*/
*snr = 0.;
/*< A( 2, 1 ) = ZERO >*/
a[a_dim1 + 2] = 0.;
/*< B( 2, 1 ) = ZERO >*/
b[b_dim1 + 2] = 0.;
/* Check if B is singular */
/*< ELSE IF( ABS( B( 1, 1 ) ).LE.ULP ) THEN >*/
} else if ((d__1 = b[b_dim1 + 1], abs(d__1)) <= ulp) {
/*< CALL DLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R ) >*/
dlartg_(&a[a_dim1 + 1], &a[a_dim1 + 2], csl, snl, &r__);
/*< CSR = ONE >*/
*csr = 1.;
/*< SNR = ZERO >*/
*snr = 0.;
/*< CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL ) >*/
drot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl);
/*< CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL ) >*/
drot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl);
/*< A( 2, 1 ) = ZERO >*/
a[a_dim1 + 2] = 0.;
/*< B( 1, 1 ) = ZERO >*/
b[b_dim1 + 1] = 0.;
/*< B( 2, 1 ) = ZERO >*/
b[b_dim1 + 2] = 0.;
/*< ELSE IF( ABS( B( 2, 2 ) ).LE.ULP ) THEN >*/
} else if ((d__1 = b[(b_dim1 << 1) + 2], abs(d__1)) <= ulp) {
/*< CALL DLARTG( A( 2, 2 ), A( 2, 1 ), CSR, SNR, T ) >*/
dlartg_(&a[(a_dim1 << 1) + 2], &a[a_dim1 + 2], csr, snr, &t);
/*< SNR = -SNR >*/
*snr = -(*snr);
/*< CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR ) >*/
drot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1, csr,
snr);
/*< CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR ) >*/
drot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1, csr,
snr);
/*< CSL = ONE >*/
*csl = 1.;
/*< SNL = ZERO >*/
*snl = 0.;
/*< A( 2, 1 ) = ZERO >*/
a[a_dim1 + 2] = 0.;
/*< B( 2, 1 ) = ZERO >*/
b[b_dim1 + 2] = 0.;
/*< B( 2, 2 ) = ZERO >*/
b[(b_dim1 << 1) + 2] = 0.;
/*< ELSE >*/
} else {
/* B is nonsingular, first compute the eigenvalues of (A,B) */
/*< >*/
dlag2_(&a[a_offset], lda, &b[b_offset], ldb, &safmin, &scale1, &
scale2, &wr1, &wr2, &wi);
/*< IF( WI.EQ.ZERO ) THEN >*/
if (wi == 0.) {
/* two real eigenvalues, compute s*A-w*B */
/*< H1 = SCALE1*A( 1, 1 ) - WR1*B( 1, 1 ) >*/
h1 = scale1 * a[a_dim1 + 1] - wr1 * b[b_dim1 + 1];
/*< H2 = SCALE1*A( 1, 2 ) - WR1*B( 1, 2 ) >*/
h2 = scale1 * a[(a_dim1 << 1) + 1] - wr1 * b[(b_dim1 << 1) + 1];
/*< H3 = SCALE1*A( 2, 2 ) - WR1*B( 2, 2 ) >*/
h3 = scale1 * a[(a_dim1 << 1) + 2] - wr1 * b[(b_dim1 << 1) + 2];
/*< RR = DLAPY2( H1, H2 ) >*/
rr = dlapy2_(&h1, &h2);
/*< QQ = DLAPY2( SCALE1*A( 2, 1 ), H3 ) >*/
d__1 = scale1 * a[a_dim1 + 2];
qq = dlapy2_(&d__1, &h3);
/*< IF( RR.GT.QQ ) THEN >*/
if (rr > qq) {
/* find right rotation matrix to zero 1,1 element of */
/* (sA - wB) */
/*< CALL DLARTG( H2, H1, CSR, SNR, T ) >*/
dlartg_(&h2, &h1, csr, snr, &t);
/*< ELSE >*/
} else {
/* find right rotation matrix to zero 2,1 element of */
/* (sA - wB) */
/*< CALL DLARTG( H3, SCALE1*A( 2, 1 ), CSR, SNR, T ) >*/
d__1 = scale1 * a[a_dim1 + 2];
dlartg_(&h3, &d__1, csr, snr, &t);
/*< END IF >*/
}
/*< SNR = -SNR >*/
*snr = -(*snr);
/*< CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR ) >*/
drot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1,
csr, snr);
/*< CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR ) >*/
drot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1,
csr, snr);
/* compute inf norms of A and B */
/*< >*/
/* Computing MAX */
d__5 = (d__1 = a[a_dim1 + 1], abs(d__1)) + (d__2 = a[(a_dim1 << 1)
+ 1], abs(d__2)), d__6 = (d__3 = a[a_dim1 + 2], abs(d__3)
) + (d__4 = a[(a_dim1 << 1) + 2], abs(d__4));
h1 = max(d__5,d__6);
/*< >*/
/* Computing MAX */
d__5 = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 << 1)
+ 1], abs(d__2)), d__6 = (d__3 = b[b_dim1 + 2], abs(d__3)
) + (d__4 = b[(b_dim1 << 1) + 2], abs(d__4));
h2 = max(d__5,d__6);
/*< IF( ( SCALE1*H1 ).GE.ABS( WR1 )*H2 ) THEN >*/
if (scale1 * h1 >= abs(wr1) * h2) {
/* find left rotation matrix Q to zero out B(2,1) */
/*< CALL DLARTG( B( 1, 1 ), B( 2, 1 ), CSL, SNL, R ) >*/
dlartg_(&b[b_dim1 + 1], &b[b_dim1 + 2], csl, snl, &r__);
/*< ELSE >*/
} else {
/* find left rotation matrix Q to zero out A(2,1) */
/*< CALL DLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R ) >*/
dlartg_(&a[a_dim1 + 1], &a[a_dim1 + 2], csl, snl, &r__);
/*< END IF >*/
}
/*< CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL ) >*/
drot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl);
/*< CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL ) >*/
drot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl);
/*< A( 2, 1 ) = ZERO >*/
a[a_dim1 + 2] = 0.;
/*< B( 2, 1 ) = ZERO >*/
b[b_dim1 + 2] = 0.;
/*< ELSE >*/
} else {
/* a pair of complex conjugate eigenvalues */
/* first compute the SVD of the matrix B */
/*< >*/
dlasv2_(&b[b_dim1 + 1], &b[(b_dim1 << 1) + 1], &b[(b_dim1 << 1) +
2], &r__, &t, snr, csr, snl, csl);
/* Form (A,B) := Q(A,B)Z' where Q is left rotation matrix and */
/* Z is right rotation matrix computed from DLASV2 */
/*< CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL ) >*/
drot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl);
/*< CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL ) >*/
drot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl);
/*< CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR ) >*/
drot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1,
csr, snr);
/*< CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR ) >*/
drot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1,
csr, snr);
/*< B( 2, 1 ) = ZERO >*/
b[b_dim1 + 2] = 0.;
/*< B( 1, 2 ) = ZERO >*/
b[(b_dim1 << 1) + 1] = 0.;
/*< END IF >*/
}
/*< END IF >*/
}
/* Unscaling */
/*< A( 1, 1 ) = ANORM*A( 1, 1 ) >*/
a[a_dim1 + 1] = anorm * a[a_dim1 + 1];
/*< A( 2, 1 ) = ANORM*A( 2, 1 ) >*/
a[a_dim1 + 2] = anorm * a[a_dim1 + 2];
/*< A( 1, 2 ) = ANORM*A( 1, 2 ) >*/
a[(a_dim1 << 1) + 1] = anorm * a[(a_dim1 << 1) + 1];
/*< A( 2, 2 ) = ANORM*A( 2, 2 ) >*/
a[(a_dim1 << 1) + 2] = anorm * a[(a_dim1 << 1) + 2];
/*< B( 1, 1 ) = BNORM*B( 1, 1 ) >*/
b[b_dim1 + 1] = bnorm * b[b_dim1 + 1];
/*< B( 2, 1 ) = BNORM*B( 2, 1 ) >*/
b[b_dim1 + 2] = bnorm * b[b_dim1 + 2];
/*< B( 1, 2 ) = BNORM*B( 1, 2 ) >*/
b[(b_dim1 << 1) + 1] = bnorm * b[(b_dim1 << 1) + 1];
/*< B( 2, 2 ) = BNORM*B( 2, 2 ) >*/
b[(b_dim1 << 1) + 2] = bnorm * b[(b_dim1 << 1) + 2];
/*< IF( WI.EQ.ZERO ) THEN >*/
if (wi == 0.) {
/*< ALPHAR( 1 ) = A( 1, 1 ) >*/
alphar[1] = a[a_dim1 + 1];
/*< ALPHAR( 2 ) = A( 2, 2 ) >*/
alphar[2] = a[(a_dim1 << 1) + 2];
/*< ALPHAI( 1 ) = ZERO >*/
alphai[1] = 0.;
/*< ALPHAI( 2 ) = ZERO >*/
alphai[2] = 0.;
/*< BETA( 1 ) = B( 1, 1 ) >*/
beta[1] = b[b_dim1 + 1];
/*< BETA( 2 ) = B( 2, 2 ) >*/
beta[2] = b[(b_dim1 << 1) + 2];
/*< ELSE >*/
} else {
/*< ALPHAR( 1 ) = ANORM*WR1 / SCALE1 / BNORM >*/
alphar[1] = anorm * wr1 / scale1 / bnorm;
/*< ALPHAI( 1 ) = ANORM*WI / SCALE1 / BNORM >*/
alphai[1] = anorm * wi / scale1 / bnorm;
/*< ALPHAR( 2 ) = ALPHAR( 1 ) >*/
alphar[2] = alphar[1];
/*< ALPHAI( 2 ) = -ALPHAI( 1 ) >*/
alphai[2] = -alphai[1];
/*< BETA( 1 ) = ONE >*/
beta[1] = 1.;
/*< BETA( 2 ) = ONE >*/
beta[2] = 1.;
/*< END IF >*/
}
/*< 10 CONTINUE >*/
/* L10: */
/*< RETURN >*/
return 0;
/* End of DLAGV2 */
/*< END >*/
} /* dlagv2_ */
#ifdef __cplusplus
}
#endif
|