1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
/* lapack/double/dlanhs.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
/*< DOUBLE PRECISION FUNCTION DLANHS( NORM, N, A, LDA, WORK ) >*/
doublereal dlanhs_(char *norm, integer *n, doublereal *a, integer *lda,
doublereal *work, ftnlen norm_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
doublereal ret_val, d__1, d__2, d__3;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j;
doublereal sum, scale;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
doublereal value=0;
extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *,
doublereal *, doublereal *);
(void)norm_len;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* October 31, 1992 */
/* .. Scalar Arguments .. */
/*< CHARACTER NORM >*/
/*< INTEGER LDA, N >*/
/* .. */
/* .. Array Arguments .. */
/*< DOUBLE PRECISION A( LDA, * ), WORK( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* DLANHS returns the value of the one norm, or the Frobenius norm, or */
/* the infinity norm, or the element of largest absolute value of a */
/* Hessenberg matrix A. */
/* Description */
/* =========== */
/* DLANHS returns the value */
/* DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/* ( */
/* ( norm1(A), NORM = '1', 'O' or 'o' */
/* ( */
/* ( normI(A), NORM = 'I' or 'i' */
/* ( */
/* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
/* where norm1 denotes the one norm of a matrix (maximum column sum), */
/* normI denotes the infinity norm of a matrix (maximum row sum) and */
/* normF denotes the Frobenius norm of a matrix (square root of sum of */
/* squares). Note that max(abs(A(i,j))) is not a matrix norm. */
/* Arguments */
/* ========= */
/* NORM (input) CHARACTER*1 */
/* Specifies the value to be returned in DLANHS as described */
/* above. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. When N = 0, DLANHS is */
/* set to zero. */
/* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
/* The n by n upper Hessenberg matrix A; the part of A below the */
/* first sub-diagonal is not referenced. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(N,1). */
/* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK), */
/* where LWORK >= N when NORM = 'I'; otherwise, WORK is not */
/* referenced. */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ONE, ZERO >*/
/*< PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< INTEGER I, J >*/
/*< DOUBLE PRECISION SCALE, SUM, VALUE >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL DLASSQ >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, MAX, MIN, SQRT >*/
/* .. */
/* .. Executable Statements .. */
/*< IF( N.EQ.0 ) THEN >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--work;
/* Function Body */
if (*n == 0) {
/*< VALUE = ZERO >*/
value = 0.;
/*< ELSE IF( LSAME( NORM, 'M' ) ) THEN >*/
} else if (lsame_(norm, "M", (ftnlen)1, (ftnlen)1)) {
/* Find max(abs(A(i,j))). */
/*< VALUE = ZERO >*/
value = 0.;
/*< DO 20 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 10 I = 1, MIN( N, J+1 ) >*/
/* Computing MIN */
i__3 = *n, i__4 = j + 1;
i__2 = min(i__3,i__4);
for (i__ = 1; i__ <= i__2; ++i__) {
/*< VALUE = MAX( VALUE, ABS( A( I, J ) ) ) >*/
/* Computing MAX */
d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
value = max(d__2,d__3);
/*< 10 CONTINUE >*/
/* L10: */
}
/*< 20 CONTINUE >*/
/* L20: */
}
/*< ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN >*/
} else if (lsame_(norm, "O", (ftnlen)1, (ftnlen)1) || *(unsigned char *)
norm == '1') {
/* Find norm1(A). */
/*< VALUE = ZERO >*/
value = 0.;
/*< DO 40 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< SUM = ZERO >*/
sum = 0.;
/*< DO 30 I = 1, MIN( N, J+1 ) >*/
/* Computing MIN */
i__3 = *n, i__4 = j + 1;
i__2 = min(i__3,i__4);
for (i__ = 1; i__ <= i__2; ++i__) {
/*< SUM = SUM + ABS( A( I, J ) ) >*/
sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));
/*< 30 CONTINUE >*/
/* L30: */
}
/*< VALUE = MAX( VALUE, SUM ) >*/
value = max(value,sum);
/*< 40 CONTINUE >*/
/* L40: */
}
/*< ELSE IF( LSAME( NORM, 'I' ) ) THEN >*/
} else if (lsame_(norm, "I", (ftnlen)1, (ftnlen)1)) {
/* Find normI(A). */
/*< DO 50 I = 1, N >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< WORK( I ) = ZERO >*/
work[i__] = 0.;
/*< 50 CONTINUE >*/
/* L50: */
}
/*< DO 70 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 60 I = 1, MIN( N, J+1 ) >*/
/* Computing MIN */
i__3 = *n, i__4 = j + 1;
i__2 = min(i__3,i__4);
for (i__ = 1; i__ <= i__2; ++i__) {
/*< WORK( I ) = WORK( I ) + ABS( A( I, J ) ) >*/
work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));
/*< 60 CONTINUE >*/
/* L60: */
}
/*< 70 CONTINUE >*/
/* L70: */
}
/*< VALUE = ZERO >*/
value = 0.;
/*< DO 80 I = 1, N >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< VALUE = MAX( VALUE, WORK( I ) ) >*/
/* Computing MAX */
d__1 = value, d__2 = work[i__];
value = max(d__1,d__2);
/*< 80 CONTINUE >*/
/* L80: */
}
/*< ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN >*/
} else if (lsame_(norm, "F", (ftnlen)1, (ftnlen)1) || lsame_(norm, "E", (
ftnlen)1, (ftnlen)1)) {
/* Find normF(A). */
/*< SCALE = ZERO >*/
scale = 0.;
/*< SUM = ONE >*/
sum = 1.;
/*< DO 90 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< CALL DLASSQ( MIN( N, J+1 ), A( 1, J ), 1, SCALE, SUM ) >*/
/* Computing MIN */
i__3 = *n, i__4 = j + 1;
i__2 = min(i__3,i__4);
dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
/*< 90 CONTINUE >*/
/* L90: */
}
/*< VALUE = SCALE*SQRT( SUM ) >*/
value = scale * sqrt(sum);
/*< END IF >*/
}
/*< DLANHS = VALUE >*/
ret_val = value;
/*< RETURN >*/
return ret_val;
/* End of DLANHS */
/*< END >*/
} /* dlanhs_ */
#ifdef __cplusplus
}
#endif
|