File: dlarfg.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (231 lines) | stat: -rw-r--r-- 6,846 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/* lapack/double/dlarfg.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/*<       SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU ) >*/
/* Subroutine */ int dlarfg_(integer *n, doublereal *alpha, doublereal *x, 
        integer *incx, doublereal *tau)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1;

    /* Builtin functions */
    double d_sign(doublereal *, doublereal *);

    /* Local variables */
    integer j, knt;
    doublereal beta;
    extern doublereal dnrm2_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
            integer *);
    doublereal xnorm;
    extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *, 
            ftnlen);
    doublereal safmin, rsafmn;


/*  -- LAPACK auxiliary routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     September 30, 1994 */

/*     .. Scalar Arguments .. */
/*<       INTEGER            INCX, N >*/
/*<       DOUBLE PRECISION   ALPHA, TAU >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       DOUBLE PRECISION   X( * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLARFG generates a real elementary reflector H of order n, such */
/*  that */

/*        H * ( alpha ) = ( beta ),   H' * H = I. */
/*            (   x   )   (   0  ) */

/*  where alpha and beta are scalars, and x is an (n-1)-element real */
/*  vector. H is represented in the form */

/*        H = I - tau * ( 1 ) * ( 1 v' ) , */
/*                      ( v ) */

/*  where tau is a real scalar and v is a real (n-1)-element */
/*  vector. */

/*  If the elements of x are all zero, then tau = 0 and H is taken to be */
/*  the unit matrix. */

/*  Otherwise  1 <= tau <= 2. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the elementary reflector. */

/*  ALPHA   (input/output) DOUBLE PRECISION */
/*          On entry, the value alpha. */
/*          On exit, it is overwritten with the value beta. */

/*  X       (input/output) DOUBLE PRECISION array, dimension */
/*                         (1+(N-2)*abs(INCX)) */
/*          On entry, the vector x. */
/*          On exit, it is overwritten with the vector v. */

/*  INCX    (input) INTEGER */
/*          The increment between elements of X. INCX > 0. */

/*  TAU     (output) DOUBLE PRECISION */
/*          The value tau. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*<       DOUBLE PRECISION   ONE, ZERO >*/
/*<       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       INTEGER            J, KNT >*/
/*<       DOUBLE PRECISION   BETA, RSAFMN, SAFMIN, XNORM >*/
/*     .. */
/*     .. External Functions .. */
/*<       DOUBLE PRECISION   DLAMCH, DLAPY2, DNRM2 >*/
/*<       EXTERNAL           DLAMCH, DLAPY2, DNRM2 >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          ABS, SIGN >*/
/*     .. */
/*     .. External Subroutines .. */
/*<       EXTERNAL           DSCAL >*/
/*     .. */
/*     .. Executable Statements .. */

/*<       IF( N.LE.1 ) THEN >*/
    /* Parameter adjustments */
    --x;

    /* Function Body */
    if (*n <= 1) {
/*<          TAU = ZERO >*/
        *tau = 0.;
/*<          RETURN >*/
        return 0;
/*<       END IF >*/
    }

/*<       XNORM = DNRM2( N-1, X, INCX ) >*/
    i__1 = *n - 1;
    xnorm = dnrm2_(&i__1, &x[1], incx);

/*<       IF( XNORM.EQ.ZERO ) THEN >*/
    if (xnorm == 0.) {

/*        H  =  I */

/*<          TAU = ZERO >*/
        *tau = 0.;
/*<       ELSE >*/
    } else {

/*        general case */

/*<          BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA ) >*/
        d__1 = dlapy2_(alpha, &xnorm);
        beta = -d_sign(&d__1, alpha);
/*<          SAFMIN = DLAMCH( 'S' ) / DLAMCH( 'E' ) >*/
        safmin = dlamch_("S", (ftnlen)1) / dlamch_("E", (ftnlen)1);
/*<          IF( ABS( BETA ).LT.SAFMIN ) THEN >*/
        if (abs(beta) < safmin) {

/*           XNORM, BETA may be inaccurate; scale X and recompute them */

/*<             RSAFMN = ONE / SAFMIN >*/
            rsafmn = 1. / safmin;
/*<             KNT = 0 >*/
            knt = 0;
/*<    10       CONTINUE >*/
L10:
/*<             KNT = KNT + 1 >*/
            ++knt;
/*<             CALL DSCAL( N-1, RSAFMN, X, INCX ) >*/
            i__1 = *n - 1;
            dscal_(&i__1, &rsafmn, &x[1], incx);
/*<             BETA = BETA*RSAFMN >*/
            beta *= rsafmn;
/*<             ALPHA = ALPHA*RSAFMN >*/
            *alpha *= rsafmn;
/*<    >*/
            if (abs(beta) < safmin) {
                goto L10;
            }

/*           New BETA is at most 1, at least SAFMIN */

/*<             XNORM = DNRM2( N-1, X, INCX ) >*/
            i__1 = *n - 1;
            xnorm = dnrm2_(&i__1, &x[1], incx);
/*<             BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA ) >*/
            d__1 = dlapy2_(alpha, &xnorm);
            beta = -d_sign(&d__1, alpha);
/*<             TAU = ( BETA-ALPHA ) / BETA >*/
            *tau = (beta - *alpha) / beta;
/*<             CALL DSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX ) >*/
            i__1 = *n - 1;
            d__1 = 1. / (*alpha - beta);
            dscal_(&i__1, &d__1, &x[1], incx);

/*           If ALPHA is subnormal, it may lose relative accuracy */

/*<             ALPHA = BETA >*/
            *alpha = beta;
/*<             DO 20 J = 1, KNT >*/
            i__1 = knt;
            for (j = 1; j <= i__1; ++j) {
/*<                ALPHA = ALPHA*SAFMIN >*/
                *alpha *= safmin;
/*<    20       CONTINUE >*/
/* L20: */
            }
/*<          ELSE >*/
        } else {
/*<             TAU = ( BETA-ALPHA ) / BETA >*/
            *tau = (beta - *alpha) / beta;
/*<             CALL DSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX ) >*/
            i__1 = *n - 1;
            d__1 = 1. / (*alpha - beta);
            dscal_(&i__1, &d__1, &x[1], incx);
/*<             ALPHA = BETA >*/
            *alpha = beta;
/*<          END IF >*/
        }
/*<       END IF >*/
    }

/*<       RETURN >*/
    return 0;

/*     End of DLARFG */

/*<       END >*/
} /* dlarfg_ */

#ifdef __cplusplus
        }
#endif