File: dlarft.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (347 lines) | stat: -rw-r--r-- 12,376 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
/* lapack/double/dlarft.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__1 = 1;
static doublereal c_b8 = 0.;

/*<       SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) >*/
/* Subroutine */ int dlarft_(char *direct, char *storev, integer *n, integer *
        k, doublereal *v, integer *ldv, doublereal *tau, doublereal *t, 
        integer *ldt, ftnlen direct_len, ftnlen storev_len)
{
    /* System generated locals */
    integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3;
    doublereal d__1;

    /* Local variables */
    integer i__, j;
    doublereal vii;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
            doublereal *, doublereal *, integer *, doublereal *, integer *, 
            doublereal *, doublereal *, integer *, ftnlen), dtrmv_(char *, 
            char *, char *, integer *, doublereal *, integer *, doublereal *, 
            integer *, ftnlen, ftnlen, ftnlen);
    (void)direct_len;
    (void)storev_len;

/*  -- LAPACK auxiliary routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     February 29, 1992 */

/*     .. Scalar Arguments .. */
/*<       CHARACTER          DIRECT, STOREV >*/
/*<       INTEGER            K, LDT, LDV, N >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       DOUBLE PRECISION   T( LDT, * ), TAU( * ), V( LDV, * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLARFT forms the triangular factor T of a real block reflector H */
/*  of order n, which is defined as a product of k elementary reflectors. */

/*  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; */

/*  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. */

/*  If STOREV = 'C', the vector which defines the elementary reflector */
/*  H(i) is stored in the i-th column of the array V, and */

/*     H  =  I - V * T * V' */

/*  If STOREV = 'R', the vector which defines the elementary reflector */
/*  H(i) is stored in the i-th row of the array V, and */

/*     H  =  I - V' * T * V */

/*  Arguments */
/*  ========= */

/*  DIRECT  (input) CHARACTER*1 */
/*          Specifies the order in which the elementary reflectors are */
/*          multiplied to form the block reflector: */
/*          = 'F': H = H(1) H(2) . . . H(k) (Forward) */
/*          = 'B': H = H(k) . . . H(2) H(1) (Backward) */

/*  STOREV  (input) CHARACTER*1 */
/*          Specifies how the vectors which define the elementary */
/*          reflectors are stored (see also Further Details): */
/*          = 'C': columnwise */
/*          = 'R': rowwise */

/*  N       (input) INTEGER */
/*          The order of the block reflector H. N >= 0. */

/*  K       (input) INTEGER */
/*          The order of the triangular factor T (= the number of */
/*          elementary reflectors). K >= 1. */

/*  V       (input/output) DOUBLE PRECISION array, dimension */
/*                               (LDV,K) if STOREV = 'C' */
/*                               (LDV,N) if STOREV = 'R' */
/*          The matrix V. See further details. */

/*  LDV     (input) INTEGER */
/*          The leading dimension of the array V. */
/*          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. */

/*  TAU     (input) DOUBLE PRECISION array, dimension (K) */
/*          TAU(i) must contain the scalar factor of the elementary */
/*          reflector H(i). */

/*  T       (output) DOUBLE PRECISION array, dimension (LDT,K) */
/*          The k by k triangular factor T of the block reflector. */
/*          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is */
/*          lower triangular. The rest of the array is not used. */

/*  LDT     (input) INTEGER */
/*          The leading dimension of the array T. LDT >= K. */

/*  Further Details */
/*  =============== */

/*  The shape of the matrix V and the storage of the vectors which define */
/*  the H(i) is best illustrated by the following example with n = 5 and */
/*  k = 3. The elements equal to 1 are not stored; the corresponding */
/*  array elements are modified but restored on exit. The rest of the */
/*  array is not used. */

/*  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R': */

/*               V = (  1       )                 V = (  1 v1 v1 v1 v1 ) */
/*                   ( v1  1    )                     (     1 v2 v2 v2 ) */
/*                   ( v1 v2  1 )                     (        1 v3 v3 ) */
/*                   ( v1 v2 v3 ) */
/*                   ( v1 v2 v3 ) */

/*  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R': */

/*               V = ( v1 v2 v3 )                 V = ( v1 v1  1       ) */
/*                   ( v1 v2 v3 )                     ( v2 v2 v2  1    ) */
/*                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 ) */
/*                   (     1 v3 ) */
/*                   (        1 ) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*<       DOUBLE PRECISION   ONE, ZERO >*/
/*<       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       INTEGER            I, J >*/
/*<       DOUBLE PRECISION   VII >*/
/*     .. */
/*     .. External Subroutines .. */
/*<       EXTERNAL           DGEMV, DTRMV >*/
/*     .. */
/*     .. External Functions .. */
/*<       LOGICAL            LSAME >*/
/*<       EXTERNAL           LSAME >*/
/*     .. */
/*     .. Executable Statements .. */

/*     Quick return if possible */

/*<    >*/
    /* Parameter adjustments */
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    --tau;
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1;
    t -= t_offset;

    /* Function Body */
    if (*n == 0) {
        return 0;
    }

/*<       IF( LSAME( DIRECT, 'F' ) ) THEN >*/
    if (lsame_(direct, "F", (ftnlen)1, (ftnlen)1)) {
/*<          DO 20 I = 1, K >*/
        i__1 = *k;
        for (i__ = 1; i__ <= i__1; ++i__) {
/*<             IF( TAU( I ).EQ.ZERO ) THEN >*/
            if (tau[i__] == 0.) {

/*              H(i)  =  I */

/*<                DO 10 J = 1, I >*/
                i__2 = i__;
                for (j = 1; j <= i__2; ++j) {
/*<                   T( J, I ) = ZERO >*/
                    t[j + i__ * t_dim1] = 0.;
/*<    10          CONTINUE >*/
/* L10: */
                }
/*<             ELSE >*/
            } else {

/*              general case */

/*<                VII = V( I, I ) >*/
                vii = v[i__ + i__ * v_dim1];
/*<                V( I, I ) = ONE >*/
                v[i__ + i__ * v_dim1] = 1.;
/*<                IF( LSAME( STOREV, 'C' ) ) THEN >*/
                if (lsame_(storev, "C", (ftnlen)1, (ftnlen)1)) {

/*                 T(1:i-1,i) := - tau(i) * V(i:n,1:i-1)' * V(i:n,i) */

/*<    >*/
                    i__2 = *n - i__ + 1;
                    i__3 = i__ - 1;
                    d__1 = -tau[i__];
                    dgemv_("Transpose", &i__2, &i__3, &d__1, &v[i__ + v_dim1],
                             ldv, &v[i__ + i__ * v_dim1], &c__1, &c_b8, &t[
                            i__ * t_dim1 + 1], &c__1, (ftnlen)9);
/*<                ELSE >*/
                } else {

/*                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:n) * V(i,i:n)' */

/*<    >*/
                    i__2 = i__ - 1;
                    i__3 = *n - i__ + 1;
                    d__1 = -tau[i__];
                    dgemv_("No transpose", &i__2, &i__3, &d__1, &v[i__ * 
                            v_dim1 + 1], ldv, &v[i__ + i__ * v_dim1], ldv, &
                            c_b8, &t[i__ * t_dim1 + 1], &c__1, (ftnlen)12);
/*<                END IF >*/
                }
/*<                V( I, I ) = VII >*/
                v[i__ + i__ * v_dim1] = vii;

/*              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */

/*<    >*/
                i__2 = i__ - 1;
                dtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[
                        t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1, (ftnlen)
                        5, (ftnlen)12, (ftnlen)8);
/*<                T( I, I ) = TAU( I ) >*/
                t[i__ + i__ * t_dim1] = tau[i__];
/*<             END IF >*/
            }
/*<    20    CONTINUE >*/
/* L20: */
        }
/*<       ELSE >*/
    } else {
/*<          DO 40 I = K, 1, -1 >*/
        for (i__ = *k; i__ >= 1; --i__) {
/*<             IF( TAU( I ).EQ.ZERO ) THEN >*/
            if (tau[i__] == 0.) {

/*              H(i)  =  I */

/*<                DO 30 J = I, K >*/
                i__1 = *k;
                for (j = i__; j <= i__1; ++j) {
/*<                   T( J, I ) = ZERO >*/
                    t[j + i__ * t_dim1] = 0.;
/*<    30          CONTINUE >*/
/* L30: */
                }
/*<             ELSE >*/
            } else {

/*              general case */

/*<                IF( I.LT.K ) THEN >*/
                if (i__ < *k) {
/*<                   IF( LSAME( STOREV, 'C' ) ) THEN >*/
                    if (lsame_(storev, "C", (ftnlen)1, (ftnlen)1)) {
/*<                      VII = V( N-K+I, I ) >*/
                        vii = v[*n - *k + i__ + i__ * v_dim1];
/*<                      V( N-K+I, I ) = ONE >*/
                        v[*n - *k + i__ + i__ * v_dim1] = 1.;

/*                    T(i+1:k,i) := */
/*                            - tau(i) * V(1:n-k+i,i+1:k)' * V(1:n-k+i,i) */

/*<    >*/
                        i__1 = *n - *k + i__;
                        i__2 = *k - i__;
                        d__1 = -tau[i__];
                        dgemv_("Transpose", &i__1, &i__2, &d__1, &v[(i__ + 1) 
                                * v_dim1 + 1], ldv, &v[i__ * v_dim1 + 1], &
                                c__1, &c_b8, &t[i__ + 1 + i__ * t_dim1], &
                                c__1, (ftnlen)9);
/*<                      V( N-K+I, I ) = VII >*/
                        v[*n - *k + i__ + i__ * v_dim1] = vii;
/*<                   ELSE >*/
                    } else {
/*<                      VII = V( I, N-K+I ) >*/
                        vii = v[i__ + (*n - *k + i__) * v_dim1];
/*<                      V( I, N-K+I ) = ONE >*/
                        v[i__ + (*n - *k + i__) * v_dim1] = 1.;

/*                    T(i+1:k,i) := */
/*                            - tau(i) * V(i+1:k,1:n-k+i) * V(i,1:n-k+i)' */

/*<    >*/
                        i__1 = *k - i__;
                        i__2 = *n - *k + i__;
                        d__1 = -tau[i__];
                        dgemv_("No transpose", &i__1, &i__2, &d__1, &v[i__ + 
                                1 + v_dim1], ldv, &v[i__ + v_dim1], ldv, &
                                c_b8, &t[i__ + 1 + i__ * t_dim1], &c__1, (
                                ftnlen)12);
/*<                      V( I, N-K+I ) = VII >*/
                        v[i__ + (*n - *k + i__) * v_dim1] = vii;
/*<                   END IF >*/
                    }

/*                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */

/*<    >*/
                    i__1 = *k - i__;
                    dtrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__ 
                            + 1 + (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ *
                             t_dim1], &c__1, (ftnlen)5, (ftnlen)12, (ftnlen)8)
                            ;
/*<                END IF >*/
                }
/*<                T( I, I ) = TAU( I ) >*/
                t[i__ + i__ * t_dim1] = tau[i__];
/*<             END IF >*/
            }
/*<    40    CONTINUE >*/
/* L40: */
        }
/*<       END IF >*/
    }
/*<       RETURN >*/
    return 0;

/*     End of DLARFT */

/*<       END >*/
} /* dlarft_ */

#ifdef __cplusplus
        }
#endif