File: dlascl.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (474 lines) | stat: -rw-r--r-- 14,061 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
/* lapack/double/dlascl.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/*<       SUBROUTINE DLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO ) >*/
/* Subroutine */ int dlascl_(char *type__, integer *kl, integer *ku, 
        doublereal *cfrom, doublereal *cto, integer *m, integer *n, 
        doublereal *a, integer *lda, integer *info, ftnlen type_len)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;

    /* Local variables */
    integer i__, j, k1, k2, k3, k4;
    doublereal mul, cto1;
    logical done;
    doublereal ctoc;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    integer itype;
    doublereal cfrom1;
    extern doublereal dlamch_(char *, ftnlen);
    doublereal cfromc;
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
    doublereal bignum, smlnum;
    (void)type_len;

/*  -- LAPACK auxiliary routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     February 29, 1992 */

/*     .. Scalar Arguments .. */
/*<       CHARACTER          TYPE >*/
/*<       INTEGER            INFO, KL, KU, LDA, M, N >*/
/*<       DOUBLE PRECISION   CFROM, CTO >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       DOUBLE PRECISION   A( LDA, * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLASCL multiplies the M by N real matrix A by the real scalar */
/*  CTO/CFROM.  This is done without over/underflow as long as the final */
/*  result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that */
/*  A may be full, upper triangular, lower triangular, upper Hessenberg, */
/*  or banded. */

/*  Arguments */
/*  ========= */

/*  TYPE    (input) CHARACTER*1 */
/*          TYPE indices the storage type of the input matrix. */
/*          = 'G':  A is a full matrix. */
/*          = 'L':  A is a lower triangular matrix. */
/*          = 'U':  A is an upper triangular matrix. */
/*          = 'H':  A is an upper Hessenberg matrix. */
/*          = 'B':  A is a symmetric band matrix with lower bandwidth KL */
/*                  and upper bandwidth KU and with the only the lower */
/*                  half stored. */
/*          = 'Q':  A is a symmetric band matrix with lower bandwidth KL */
/*                  and upper bandwidth KU and with the only the upper */
/*                  half stored. */
/*          = 'Z':  A is a band matrix with lower bandwidth KL and upper */
/*                  bandwidth KU. */

/*  KL      (input) INTEGER */
/*          The lower bandwidth of A.  Referenced only if TYPE = 'B', */
/*          'Q' or 'Z'. */

/*  KU      (input) INTEGER */
/*          The upper bandwidth of A.  Referenced only if TYPE = 'B', */
/*          'Q' or 'Z'. */

/*  CFROM   (input) DOUBLE PRECISION */
/*  CTO     (input) DOUBLE PRECISION */
/*          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed */
/*          without over/underflow if the final result CTO*A(I,J)/CFROM */
/*          can be represented without over/underflow.  CFROM must be */
/*          nonzero. */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,M) */
/*          The matrix to be multiplied by CTO/CFROM.  See TYPE for the */
/*          storage type. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  INFO    (output) INTEGER */
/*          0  - successful exit */
/*          <0 - if INFO = -i, the i-th argument had an illegal value. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*<       DOUBLE PRECISION   ZERO, ONE >*/
/*<       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       LOGICAL            DONE >*/
/*<       INTEGER            I, ITYPE, J, K1, K2, K3, K4 >*/
/*<       DOUBLE PRECISION   BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM >*/
/*     .. */
/*     .. External Functions .. */
/*<       LOGICAL            LSAME >*/
/*<       DOUBLE PRECISION   DLAMCH >*/
/*<       EXTERNAL           LSAME, DLAMCH >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          ABS, MAX, MIN >*/
/*     .. */
/*     .. External Subroutines .. */
/*<       EXTERNAL           XERBLA >*/
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

/*<       INFO = 0 >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;

    /* Function Body */
    *info = 0;

/*<       IF( LSAME( TYPE, 'G' ) ) THEN >*/
    if (lsame_(type__, "G", (ftnlen)1, (ftnlen)1)) {
/*<          ITYPE = 0 >*/
        itype = 0;
/*<       ELSE IF( LSAME( TYPE, 'L' ) ) THEN >*/
    } else if (lsame_(type__, "L", (ftnlen)1, (ftnlen)1)) {
/*<          ITYPE = 1 >*/
        itype = 1;
/*<       ELSE IF( LSAME( TYPE, 'U' ) ) THEN >*/
    } else if (lsame_(type__, "U", (ftnlen)1, (ftnlen)1)) {
/*<          ITYPE = 2 >*/
        itype = 2;
/*<       ELSE IF( LSAME( TYPE, 'H' ) ) THEN >*/
    } else if (lsame_(type__, "H", (ftnlen)1, (ftnlen)1)) {
/*<          ITYPE = 3 >*/
        itype = 3;
/*<       ELSE IF( LSAME( TYPE, 'B' ) ) THEN >*/
    } else if (lsame_(type__, "B", (ftnlen)1, (ftnlen)1)) {
/*<          ITYPE = 4 >*/
        itype = 4;
/*<       ELSE IF( LSAME( TYPE, 'Q' ) ) THEN >*/
    } else if (lsame_(type__, "Q", (ftnlen)1, (ftnlen)1)) {
/*<          ITYPE = 5 >*/
        itype = 5;
/*<       ELSE IF( LSAME( TYPE, 'Z' ) ) THEN >*/
    } else if (lsame_(type__, "Z", (ftnlen)1, (ftnlen)1)) {
/*<          ITYPE = 6 >*/
        itype = 6;
/*<       ELSE >*/
    } else {
/*<          ITYPE = -1 >*/
        itype = -1;
/*<       END IF >*/
    }

/*<       IF( ITYPE.EQ.-1 ) THEN >*/
    if (itype == -1) {
/*<          INFO = -1 >*/
        *info = -1;
/*<       ELSE IF( CFROM.EQ.ZERO ) THEN >*/
    } else if (*cfrom == 0.) {
/*<          INFO = -4 >*/
        *info = -4;
/*<       ELSE IF( M.LT.0 ) THEN >*/
    } else if (*m < 0) {
/*<          INFO = -6 >*/
        *info = -6;
/*<    >*/
    } else if (*n < 0 || (itype == 4 && *n != *m) || (itype == 5 && *n != *m)) {
/*<          INFO = -7 >*/
        *info = -7;
/*<       ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN >*/
    } else if (itype <= 3 && *lda < max(1,*m)) {
/*<          INFO = -9 >*/
        *info = -9;
/*<       ELSE IF( ITYPE.GE.4 ) THEN >*/
    } else if (itype >= 4) {
/*<          IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN >*/
/* Computing MAX */
        i__1 = *m - 1;
        if (*kl < 0 || *kl > max(i__1,0)) {
/*<             INFO = -2 >*/
            *info = -2;
/*<    >*/
        } else /* if(complicated condition) */ {
/* Computing MAX */
            i__1 = *n - 1;
            if (*ku < 0 || *ku > max(i__1,0) || ((itype == 4 || itype == 5) && 
                    *kl != *ku)) {
/*<             INFO = -3 >*/
                *info = -3;
/*<    >*/
            } else if ((itype == 4 && *lda < *kl + 1) || (itype == 5 && *lda < *
                    ku + 1) || (itype == 6 && *lda < (*kl << 1) + *ku + 1)) {
/*<             INFO = -9 >*/
                *info = -9;
/*<          END IF >*/
            }
        }
/*<       END IF >*/
    }

/*<       IF( INFO.NE.0 ) THEN >*/
    if (*info != 0) {
/*<          CALL XERBLA( 'DLASCL', -INFO ) >*/
        i__1 = -(*info);
        xerbla_("DLASCL", &i__1, (ftnlen)6);
/*<          RETURN >*/
        return 0;
/*<       END IF >*/
    }

/*     Quick return if possible */

/*<    >*/
    if (*n == 0 || *m == 0) {
        return 0;
    }

/*     Get machine parameters */

/*<       SMLNUM = DLAMCH( 'S' ) >*/
    smlnum = dlamch_("S", (ftnlen)1);
/*<       BIGNUM = ONE / SMLNUM >*/
    bignum = 1. / smlnum;

/*<       CFROMC = CFROM >*/
    cfromc = *cfrom;
/*<       CTOC = CTO >*/
    ctoc = *cto;

/*<    10 CONTINUE >*/
L10:
/*<       CFROM1 = CFROMC*SMLNUM >*/
    cfrom1 = cfromc * smlnum;
/*<       CTO1 = CTOC / BIGNUM >*/
    cto1 = ctoc / bignum;
/*<       IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN >*/
    if (abs(cfrom1) > abs(ctoc) && ctoc != 0.) {
/*<          MUL = SMLNUM >*/
        mul = smlnum;
/*<          DONE = .FALSE. >*/
        done = FALSE_;
/*<          CFROMC = CFROM1 >*/
        cfromc = cfrom1;
/*<       ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN >*/
    } else if (abs(cto1) > abs(cfromc)) {
/*<          MUL = BIGNUM >*/
        mul = bignum;
/*<          DONE = .FALSE. >*/
        done = FALSE_;
/*<          CTOC = CTO1 >*/
        ctoc = cto1;
/*<       ELSE >*/
    } else {
/*<          MUL = CTOC / CFROMC >*/
        mul = ctoc / cfromc;
/*<          DONE = .TRUE. >*/
        done = TRUE_;
/*<       END IF >*/
    }

/*<       IF( ITYPE.EQ.0 ) THEN >*/
    if (itype == 0) {

/*        Full matrix */

/*<          DO 30 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             DO 20 I = 1, M >*/
            i__2 = *m;
            for (i__ = 1; i__ <= i__2; ++i__) {
/*<                A( I, J ) = A( I, J )*MUL >*/
                a[i__ + j * a_dim1] *= mul;
/*<    20       CONTINUE >*/
/* L20: */
            }
/*<    30    CONTINUE >*/
/* L30: */
        }

/*<       ELSE IF( ITYPE.EQ.1 ) THEN >*/
    } else if (itype == 1) {

/*        Lower triangular matrix */

/*<          DO 50 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             DO 40 I = J, M >*/
            i__2 = *m;
            for (i__ = j; i__ <= i__2; ++i__) {
/*<                A( I, J ) = A( I, J )*MUL >*/
                a[i__ + j * a_dim1] *= mul;
/*<    40       CONTINUE >*/
/* L40: */
            }
/*<    50    CONTINUE >*/
/* L50: */
        }

/*<       ELSE IF( ITYPE.EQ.2 ) THEN >*/
    } else if (itype == 2) {

/*        Upper triangular matrix */

/*<          DO 70 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             DO 60 I = 1, MIN( J, M ) >*/
            i__2 = min(j,*m);
            for (i__ = 1; i__ <= i__2; ++i__) {
/*<                A( I, J ) = A( I, J )*MUL >*/
                a[i__ + j * a_dim1] *= mul;
/*<    60       CONTINUE >*/
/* L60: */
            }
/*<    70    CONTINUE >*/
/* L70: */
        }

/*<       ELSE IF( ITYPE.EQ.3 ) THEN >*/
    } else if (itype == 3) {

/*        Upper Hessenberg matrix */

/*<          DO 90 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             DO 80 I = 1, MIN( J+1, M ) >*/
/* Computing MIN */
            i__3 = j + 1;
            i__2 = min(i__3,*m);
            for (i__ = 1; i__ <= i__2; ++i__) {
/*<                A( I, J ) = A( I, J )*MUL >*/
                a[i__ + j * a_dim1] *= mul;
/*<    80       CONTINUE >*/
/* L80: */
            }
/*<    90    CONTINUE >*/
/* L90: */
        }

/*<       ELSE IF( ITYPE.EQ.4 ) THEN >*/
    } else if (itype == 4) {

/*        Lower half of a symmetric band matrix */

/*<          K3 = KL + 1 >*/
        k3 = *kl + 1;
/*<          K4 = N + 1 >*/
        k4 = *n + 1;
/*<          DO 110 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             DO 100 I = 1, MIN( K3, K4-J ) >*/
/* Computing MIN */
            i__3 = k3, i__4 = k4 - j;
            i__2 = min(i__3,i__4);
            for (i__ = 1; i__ <= i__2; ++i__) {
/*<                A( I, J ) = A( I, J )*MUL >*/
                a[i__ + j * a_dim1] *= mul;
/*<   100       CONTINUE >*/
/* L100: */
            }
/*<   110    CONTINUE >*/
/* L110: */
        }

/*<       ELSE IF( ITYPE.EQ.5 ) THEN >*/
    } else if (itype == 5) {

/*        Upper half of a symmetric band matrix */

/*<          K1 = KU + 2 >*/
        k1 = *ku + 2;
/*<          K3 = KU + 1 >*/
        k3 = *ku + 1;
/*<          DO 130 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             DO 120 I = MAX( K1-J, 1 ), K3 >*/
/* Computing MAX */
            i__2 = k1 - j;
            i__3 = k3;
            for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
/*<                A( I, J ) = A( I, J )*MUL >*/
                a[i__ + j * a_dim1] *= mul;
/*<   120       CONTINUE >*/
/* L120: */
            }
/*<   130    CONTINUE >*/
/* L130: */
        }

/*<       ELSE IF( ITYPE.EQ.6 ) THEN >*/
    } else if (itype == 6) {

/*        Band matrix */

/*<          K1 = KL + KU + 2 >*/
        k1 = *kl + *ku + 2;
/*<          K2 = KL + 1 >*/
        k2 = *kl + 1;
/*<          K3 = 2*KL + KU + 1 >*/
        k3 = (*kl << 1) + *ku + 1;
/*<          K4 = KL + KU + 1 + M >*/
        k4 = *kl + *ku + 1 + *m;
/*<          DO 150 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J ) >*/
/* Computing MAX */
            i__3 = k1 - j;
/* Computing MIN */
            i__4 = k3, i__5 = k4 - j;
            i__2 = min(i__4,i__5);
            for (i__ = max(i__3,k2); i__ <= i__2; ++i__) {
/*<                A( I, J ) = A( I, J )*MUL >*/
                a[i__ + j * a_dim1] *= mul;
/*<   140       CONTINUE >*/
/* L140: */
            }
/*<   150    CONTINUE >*/
/* L150: */
        }

/*<       END IF >*/
    }

/*<    >*/
    if (! done) {
        goto L10;
    }

/*<       RETURN >*/
    return 0;

/*     End of DLASCL */

/*<       END >*/
} /* dlascl_ */

#ifdef __cplusplus
        }
#endif