1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
/* lapack/double/dlatdf.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static doublereal c_b23 = 1.;
static doublereal c_b37 = -1.;
/*< >*/
/* Subroutine */ int dlatdf_(integer *ijob, integer *n, doublereal *z__,
integer *ldz, doublereal *rhs, doublereal *rdsum, doublereal *rdscal,
integer *ipiv, integer *jpiv)
{
/* System generated locals */
integer z_dim1, z_offset, i__1, i__2;
doublereal d__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j, k;
doublereal bm, bp, xm[8], xp[8];
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
integer *);
integer info;
doublereal temp, work[32];
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
extern doublereal dasum_(integer *, doublereal *, integer *);
doublereal pmone;
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *), daxpy_(integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *);
doublereal sminu;
integer iwork[8];
doublereal splus;
extern /* Subroutine */ int dgesc2_(integer *, doublereal *, integer *,
doublereal *, integer *, integer *, doublereal *), dgecon_(char *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
doublereal *, integer *, integer *, ftnlen), dlassq_(integer *,
doublereal *, integer *, doublereal *, doublereal *), dlaswp_(
integer *, doublereal *, integer *, integer *, integer *, integer
*, integer *);
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* .. Scalar Arguments .. */
/*< INTEGER IJOB, LDZ, N >*/
/*< DOUBLE PRECISION RDSCAL, RDSUM >*/
/* .. */
/* .. Array Arguments .. */
/*< INTEGER IPIV( * ), JPIV( * ) >*/
/*< DOUBLE PRECISION RHS( * ), Z( LDZ, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* DLATDF uses the LU factorization of the n-by-n matrix Z computed by */
/* DGETC2 and computes a contribution to the reciprocal Dif-estimate */
/* by solving Z * x = b for x, and choosing the r.h.s. b such that */
/* the norm of x is as large as possible. On entry RHS = b holds the */
/* contribution from earlier solved sub-systems, and on return RHS = x. */
/* The factorization of Z returned by DGETC2 has the form Z = P*L*U*Q, */
/* where P and Q are permutation matrices. L is lower triangular with */
/* unit diagonal elements and U is upper triangular. */
/* Arguments */
/* ========= */
/* IJOB (input) INTEGER */
/* IJOB = 2: First compute an approximative null-vector e */
/* of Z using DGECON, e is normalized and solve for */
/* Zx = +-e - f with the sign giving the greater value */
/* of 2-norm(x). About 5 times as expensive as Default. */
/* IJOB .ne. 2: Local look ahead strategy where all entries of */
/* the r.h.s. b is choosen as either +1 or -1 (Default). */
/* N (input) INTEGER */
/* The number of columns of the matrix Z. */
/* Z (input) DOUBLE PRECISION array, dimension (LDZ, N) */
/* On entry, the LU part of the factorization of the n-by-n */
/* matrix Z computed by DGETC2: Z = P * L * U * Q */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDA >= max(1, N). */
/* RHS (input/output) DOUBLE PRECISION array, dimension N. */
/* On entry, RHS contains contributions from other subsystems. */
/* On exit, RHS contains the solution of the subsystem with */
/* entries acoording to the value of IJOB (see above). */
/* RDSUM (input/output) DOUBLE PRECISION */
/* On entry, the sum of squares of computed contributions to */
/* the Dif-estimate under computation by DTGSYL, where the */
/* scaling factor RDSCAL (see below) has been factored out. */
/* On exit, the corresponding sum of squares updated with the */
/* contributions from the current sub-system. */
/* If TRANS = 'T' RDSUM is not touched. */
/* NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL. */
/* RDSCAL (input/output) DOUBLE PRECISION */
/* On entry, scaling factor used to prevent overflow in RDSUM. */
/* On exit, RDSCAL is updated w.r.t. the current contributions */
/* in RDSUM. */
/* If TRANS = 'T', RDSCAL is not touched. */
/* NOTE: RDSCAL only makes sense when DTGSY2 is called by */
/* DTGSYL. */
/* IPIV (input) INTEGER array, dimension (N). */
/* The pivot indices; for 1 <= i <= N, row i of the */
/* matrix has been interchanged with row IPIV(i). */
/* JPIV (input) INTEGER array, dimension (N). */
/* The pivot indices; for 1 <= j <= N, column j of the */
/* matrix has been interchanged with column JPIV(j). */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/* Umea University, S-901 87 Umea, Sweden. */
/* This routine is a further developed implementation of algorithm */
/* BSOLVE in [1] using complete pivoting in the LU factorization. */
/* [1] Bo Kagstrom and Lars Westin, */
/* Generalized Schur Methods with Condition Estimators for */
/* Solving the Generalized Sylvester Equation, IEEE Transactions */
/* on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. */
/* [2] Peter Poromaa, */
/* On Efficient and Robust Estimators for the Separation */
/* between two Regular Matrix Pairs with Applications in */
/* Condition Estimation. Report IMINF-95.05, Departement of */
/* Computing Science, Umea University, S-901 87 Umea, Sweden, 1995. */
/* ===================================================================== */
/* .. Parameters .. */
/*< INTEGER MAXDIM >*/
/*< PARAMETER ( MAXDIM = 8 ) >*/
/*< DOUBLE PRECISION ZERO, ONE >*/
/*< PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< INTEGER I, INFO, J, K >*/
/*< DOUBLE PRECISION BM, BP, PMONE, SMINU, SPLUS, TEMP >*/
/* .. */
/* .. Local Arrays .. */
/*< INTEGER IWORK( MAXDIM ) >*/
/*< DOUBLE PRECISION WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM ) >*/
/* .. */
/* .. External Subroutines .. */
/*< >*/
/* .. */
/* .. External Functions .. */
/*< DOUBLE PRECISION DASUM, DDOT >*/
/*< EXTERNAL DASUM, DDOT >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, SQRT >*/
/* .. */
/* .. Executable Statements .. */
/*< IF( IJOB.NE.2 ) THEN >*/
/* Parameter adjustments */
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--rhs;
--ipiv;
--jpiv;
/* Function Body */
if (*ijob != 2) {
/* Apply permutations IPIV to RHS */
/*< CALL DLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 ) >*/
i__1 = *n - 1;
dlaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &ipiv[1], &c__1);
/* Solve for L-part choosing RHS either to +1 or -1. */
/*< PMONE = -ONE >*/
pmone = -1.;
/*< DO 10 J = 1, N - 1 >*/
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
/*< BP = RHS( J ) + ONE >*/
bp = rhs[j] + 1.;
/*< BM = RHS( J ) - ONE >*/
bm = rhs[j] - 1.;
/*< SPLUS = ONE >*/
splus = 1.;
/* Look-ahead for L-part RHS(1:N-1) = + or -1, SPLUS and */
/* SMIN computed more efficiently than in BSOLVE [1]. */
/*< SPLUS = SPLUS + DDOT( N-J, Z( J+1, J ), 1, Z( J+1, J ), 1 ) >*/
i__2 = *n - j;
splus += ddot_(&i__2, &z__[j + 1 + j * z_dim1], &c__1, &z__[j + 1
+ j * z_dim1], &c__1);
/*< SMINU = DDOT( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 ) >*/
i__2 = *n - j;
sminu = ddot_(&i__2, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1],
&c__1);
/*< SPLUS = SPLUS*RHS( J ) >*/
splus *= rhs[j];
/*< IF( SPLUS.GT.SMINU ) THEN >*/
if (splus > sminu) {
/*< RHS( J ) = BP >*/
rhs[j] = bp;
/*< ELSE IF( SMINU.GT.SPLUS ) THEN >*/
} else if (sminu > splus) {
/*< RHS( J ) = BM >*/
rhs[j] = bm;
/*< ELSE >*/
} else {
/* In this case the updating sums are equal and we can */
/* choose RHS(J) +1 or -1. The first time this happens */
/* we choose -1, thereafter +1. This is a simple way to */
/* get good estimates of matrices like Byers well-known */
/* example (see [1]). (Not done in BSOLVE.) */
/*< RHS( J ) = RHS( J ) + PMONE >*/
rhs[j] += pmone;
/*< PMONE = ONE >*/
pmone = 1.;
/*< END IF >*/
}
/* Compute the remaining r.h.s. */
/*< TEMP = -RHS( J ) >*/
temp = -rhs[j];
/*< CALL DAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 ) >*/
i__2 = *n - j;
daxpy_(&i__2, &temp, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1],
&c__1);
/*< 10 CONTINUE >*/
/* L10: */
}
/* Solve for U-part, look-ahead for RHS(N) = +-1. This is not done */
/* in BSOLVE and will hopefully give us a better estimate because */
/* any ill-conditioning of the original matrix is transfered to U */
/* and not to L. U(N, N) is an approximation to sigma_min(LU). */
/*< CALL DCOPY( N-1, RHS, 1, XP, 1 ) >*/
i__1 = *n - 1;
dcopy_(&i__1, &rhs[1], &c__1, xp, &c__1);
/*< XP( N ) = RHS( N ) + ONE >*/
xp[*n - 1] = rhs[*n] + 1.;
/*< RHS( N ) = RHS( N ) - ONE >*/
rhs[*n] += -1.;
/*< SPLUS = ZERO >*/
splus = 0.;
/*< SMINU = ZERO >*/
sminu = 0.;
/*< DO 30 I = N, 1, -1 >*/
for (i__ = *n; i__ >= 1; --i__) {
/*< TEMP = ONE / Z( I, I ) >*/
temp = 1. / z__[i__ + i__ * z_dim1];
/*< XP( I ) = XP( I )*TEMP >*/
xp[i__ - 1] *= temp;
/*< RHS( I ) = RHS( I )*TEMP >*/
rhs[i__] *= temp;
/*< DO 20 K = I + 1, N >*/
i__1 = *n;
for (k = i__ + 1; k <= i__1; ++k) {
/*< XP( I ) = XP( I ) - XP( K )*( Z( I, K )*TEMP ) >*/
xp[i__ - 1] -= xp[k - 1] * (z__[i__ + k * z_dim1] * temp);
/*< RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP ) >*/
rhs[i__] -= rhs[k] * (z__[i__ + k * z_dim1] * temp);
/*< 20 CONTINUE >*/
/* L20: */
}
/*< SPLUS = SPLUS + ABS( XP( I ) ) >*/
splus += (d__1 = xp[i__ - 1], abs(d__1));
/*< SMINU = SMINU + ABS( RHS( I ) ) >*/
sminu += (d__1 = rhs[i__], abs(d__1));
/*< 30 CONTINUE >*/
/* L30: */
}
/*< >*/
if (splus > sminu) {
dcopy_(n, xp, &c__1, &rhs[1], &c__1);
}
/* Apply the permutations JPIV to the computed solution (RHS) */
/*< CALL DLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 ) >*/
i__1 = *n - 1;
dlaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &jpiv[1], &c_n1);
/* Compute the sum of squares */
/*< CALL DLASSQ( N, RHS, 1, RDSCAL, RDSUM ) >*/
dlassq_(n, &rhs[1], &c__1, rdscal, rdsum);
/*< ELSE >*/
} else {
/* IJOB = 2, Compute approximate nullvector XM of Z */
/*< CALL DGECON( 'I', N, Z, LDZ, ONE, TEMP, WORK, IWORK, INFO ) >*/
dgecon_("I", n, &z__[z_offset], ldz, &c_b23, &temp, work, iwork, &
info, (ftnlen)1);
/*< CALL DCOPY( N, WORK( N+1 ), 1, XM, 1 ) >*/
dcopy_(n, &work[*n], &c__1, xm, &c__1);
/* Compute RHS */
/*< CALL DLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 ) >*/
i__1 = *n - 1;
dlaswp_(&c__1, xm, ldz, &c__1, &i__1, &ipiv[1], &c_n1);
/*< TEMP = ONE / SQRT( DDOT( N, XM, 1, XM, 1 ) ) >*/
temp = 1. / sqrt(ddot_(n, xm, &c__1, xm, &c__1));
/*< CALL DSCAL( N, TEMP, XM, 1 ) >*/
dscal_(n, &temp, xm, &c__1);
/*< CALL DCOPY( N, XM, 1, XP, 1 ) >*/
dcopy_(n, xm, &c__1, xp, &c__1);
/*< CALL DAXPY( N, ONE, RHS, 1, XP, 1 ) >*/
daxpy_(n, &c_b23, &rhs[1], &c__1, xp, &c__1);
/*< CALL DAXPY( N, -ONE, XM, 1, RHS, 1 ) >*/
daxpy_(n, &c_b37, xm, &c__1, &rhs[1], &c__1);
/*< CALL DGESC2( N, Z, LDZ, RHS, IPIV, JPIV, TEMP ) >*/
dgesc2_(n, &z__[z_offset], ldz, &rhs[1], &ipiv[1], &jpiv[1], &temp);
/*< CALL DGESC2( N, Z, LDZ, XP, IPIV, JPIV, TEMP ) >*/
dgesc2_(n, &z__[z_offset], ldz, xp, &ipiv[1], &jpiv[1], &temp);
/*< >*/
if (dasum_(n, xp, &c__1) > dasum_(n, &rhs[1], &c__1)) {
dcopy_(n, xp, &c__1, &rhs[1], &c__1);
}
/* Compute the sum of squares */
/*< CALL DLASSQ( N, RHS, 1, RDSCAL, RDSUM ) >*/
dlassq_(n, &rhs[1], &c__1, rdscal, rdsum);
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of DLATDF */
/*< END >*/
} /* dlatdf_ */
#ifdef __cplusplus
}
#endif
|