1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
/* dspr.f -- translated by f2c (version 20060506).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< SUBROUTINE DSPR ( UPLO, N, ALPHA, X, INCX, AP ) >*/
/* Subroutine */ int dspr_(char *uplo, integer *n, doublereal *alpha,
doublereal *x, integer *incx, doublereal *ap, ftnlen uplo_len)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer i__, j, k, kk, ix, jx, kx=0, info;
doublereal temp;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
(void)uplo_len;
/* .. Scalar Arguments .. */
/*< DOUBLE PRECISION ALPHA >*/
/*< INTEGER INCX, N >*/
/*< CHARACTER*1 UPLO >*/
/* .. Array Arguments .. */
/*< DOUBLE PRECISION AP( * ), X( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* DSPR performs the symmetric rank 1 operation */
/* A := alpha*x*x' + A, */
/* where alpha is a real scalar, x is an n element vector and A is an */
/* n by n symmetric matrix, supplied in packed form. */
/* Parameters */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the upper or lower */
/* triangular part of the matrix A is supplied in the packed */
/* array AP as follows: */
/* UPLO = 'U' or 'u' The upper triangular part of A is */
/* supplied in AP. */
/* UPLO = 'L' or 'l' The lower triangular part of A is */
/* supplied in AP. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* ALPHA - DOUBLE PRECISION. */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* X - DOUBLE PRECISION array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the n */
/* element vector x. */
/* Unchanged on exit. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* AP - DOUBLE PRECISION array of DIMENSION at least */
/* ( ( n*( n + 1 ) )/2 ). */
/* Before entry with UPLO = 'U' or 'u', the array AP must */
/* contain the upper triangular part of the symmetric matrix */
/* packed sequentially, column by column, so that AP( 1 ) */
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
/* and a( 2, 2 ) respectively, and so on. On exit, the array */
/* AP is overwritten by the upper triangular part of the */
/* updated matrix. */
/* Before entry with UPLO = 'L' or 'l', the array AP must */
/* contain the lower triangular part of the symmetric matrix */
/* packed sequentially, column by column, so that AP( 1 ) */
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
/* and a( 3, 1 ) respectively, and so on. On exit, the array */
/* AP is overwritten by the lower triangular part of the */
/* updated matrix. */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* .. Parameters .. */
/*< DOUBLE PRECISION ZERO >*/
/*< PARAMETER ( ZERO = 0.0D+0 ) >*/
/* .. Local Scalars .. */
/*< DOUBLE PRECISION TEMP >*/
/*< INTEGER I, INFO, IX, J, JX, K, KK, KX >*/
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/*< INFO = 0 >*/
/* Parameter adjustments */
--ap;
--x;
/* Function Body */
info = 0;
/*< >*/
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
ftnlen)1, (ftnlen)1)) {
/*< INFO = 1 >*/
info = 1;
/*< ELSE IF( N.LT.0 )THEN >*/
} else if (*n < 0) {
/*< INFO = 2 >*/
info = 2;
/*< ELSE IF( INCX.EQ.0 )THEN >*/
} else if (*incx == 0) {
/*< INFO = 5 >*/
info = 5;
/*< END IF >*/
}
/*< IF( INFO.NE.0 )THEN >*/
if (info != 0) {
/*< CALL XERBLA( 'DSPR ', INFO ) >*/
xerbla_("DSPR ", &info, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible. */
/*< >*/
if (*n == 0 || *alpha == 0.) {
return 0;
}
/* Set the start point in X if the increment is not unity. */
/*< IF( INCX.LE.0 )THEN >*/
if (*incx <= 0) {
/*< KX = 1 - ( N - 1 )*INCX >*/
kx = 1 - (*n - 1) * *incx;
/*< ELSE IF( INCX.NE.1 )THEN >*/
} else if (*incx != 1) {
/*< KX = 1 >*/
kx = 1;
/*< END IF >*/
}
/* Start the operations. In this version the elements of the array AP */
/* are accessed sequentially with one pass through AP. */
/*< KK = 1 >*/
kk = 1;
/*< IF( LSAME( UPLO, 'U' ) )THEN >*/
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/* Form A when upper triangle is stored in AP. */
/*< IF( INCX.EQ.1 )THEN >*/
if (*incx == 1) {
/*< DO 20, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< IF( X( J ).NE.ZERO )THEN >*/
if (x[j] != 0.) {
/*< TEMP = ALPHA*X( J ) >*/
temp = *alpha * x[j];
/*< K = KK >*/
k = kk;
/*< DO 10, I = 1, J >*/
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< AP( K ) = AP( K ) + X( I )*TEMP >*/
ap[k] += x[i__] * temp;
/*< K = K + 1 >*/
++k;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< END IF >*/
}
/*< KK = KK + J >*/
kk += j;
/*< 20 CONTINUE >*/
/* L20: */
}
/*< ELSE >*/
} else {
/*< JX = KX >*/
jx = kx;
/*< DO 40, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< IF( X( JX ).NE.ZERO )THEN >*/
if (x[jx] != 0.) {
/*< TEMP = ALPHA*X( JX ) >*/
temp = *alpha * x[jx];
/*< IX = KX >*/
ix = kx;
/*< DO 30, K = KK, KK + J - 1 >*/
i__2 = kk + j - 1;
for (k = kk; k <= i__2; ++k) {
/*< AP( K ) = AP( K ) + X( IX )*TEMP >*/
ap[k] += x[ix] * temp;
/*< IX = IX + INCX >*/
ix += *incx;
/*< 30 CONTINUE >*/
/* L30: */
}
/*< END IF >*/
}
/*< JX = JX + INCX >*/
jx += *incx;
/*< KK = KK + J >*/
kk += j;
/*< 40 CONTINUE >*/
/* L40: */
}
/*< END IF >*/
}
/*< ELSE >*/
} else {
/* Form A when lower triangle is stored in AP. */
/*< IF( INCX.EQ.1 )THEN >*/
if (*incx == 1) {
/*< DO 60, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< IF( X( J ).NE.ZERO )THEN >*/
if (x[j] != 0.) {
/*< TEMP = ALPHA*X( J ) >*/
temp = *alpha * x[j];
/*< K = KK >*/
k = kk;
/*< DO 50, I = J, N >*/
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
/*< AP( K ) = AP( K ) + X( I )*TEMP >*/
ap[k] += x[i__] * temp;
/*< K = K + 1 >*/
++k;
/*< 50 CONTINUE >*/
/* L50: */
}
/*< END IF >*/
}
/*< KK = KK + N - J + 1 >*/
kk = kk + *n - j + 1;
/*< 60 CONTINUE >*/
/* L60: */
}
/*< ELSE >*/
} else {
/*< JX = KX >*/
jx = kx;
/*< DO 80, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< IF( X( JX ).NE.ZERO )THEN >*/
if (x[jx] != 0.) {
/*< TEMP = ALPHA*X( JX ) >*/
temp = *alpha * x[jx];
/*< IX = JX >*/
ix = jx;
/*< DO 70, K = KK, KK + N - J >*/
i__2 = kk + *n - j;
for (k = kk; k <= i__2; ++k) {
/*< AP( K ) = AP( K ) + X( IX )*TEMP >*/
ap[k] += x[ix] * temp;
/*< IX = IX + INCX >*/
ix += *incx;
/*< 70 CONTINUE >*/
/* L70: */
}
/*< END IF >*/
}
/*< JX = JX + INCX >*/
jx += *incx;
/*< KK = KK + N - J + 1 >*/
kk = kk + *n - j + 1;
/*< 80 CONTINUE >*/
/* L80: */
}
/*< END IF >*/
}
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of DSPR . */
/*< END >*/
} /* dspr_ */
#ifdef __cplusplus
}
#endif
|