1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
|
/* lapack/double/dtgsyl.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__2 = 2;
static integer c_n1 = -1;
static integer c__5 = 5;
static doublereal c_b14 = 0.;
static integer c__0 = 0;
static integer c__1 = 1;
static doublereal c_b53 = -1.;
static doublereal c_b54 = 1.;
/*< >*/
/* Subroutine */ int dtgsyl_(char *trans, integer *ijob, integer *m, integer *
n, doublereal *a, integer *lda, doublereal *b, integer *ldb,
doublereal *c__, integer *ldc, doublereal *d__, integer *ldd,
doublereal *e, integer *lde, doublereal *f, integer *ldf, doublereal *
scale, doublereal *dif, doublereal *work, integer *lwork, integer *
iwork, integer *info, ftnlen trans_len)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3,
i__4;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j, k, p, q, ie, je, mb, nb, is, js, pq;
doublereal dsum;
integer ppqq;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *), dgemm_(char *, char *, integer *, integer *, integer *
, doublereal *, doublereal *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *, ftnlen, ftnlen);
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer ifunc, linfo;
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *);
integer lwmin;
doublereal scale2=0;
extern /* Subroutine */ int dtgsy2_(char *, integer *, integer *, integer
*, doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *, doublereal *, integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, doublereal *, doublereal *,
integer *, integer *, integer *, ftnlen);
doublereal dscale, scaloc;
extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *, ftnlen),
xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
integer iround;
logical notran;
integer isolve;
logical lquery;
(void)trans_len;
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* .. Scalar Arguments .. */
/*< CHARACTER TRANS >*/
/*< >*/
/*< DOUBLE PRECISION DIF, SCALE >*/
/* .. */
/* .. Array Arguments .. */
/*< INTEGER IWORK( * ) >*/
/*< >*/
/* .. */
/* Purpose */
/* ======= */
/* DTGSYL solves the generalized Sylvester equation: */
/* A * R - L * B = scale * C (1) */
/* D * R - L * E = scale * F */
/* where R and L are unknown m-by-n matrices, (A, D), (B, E) and */
/* (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n, */
/* respectively, with real entries. (A, D) and (B, E) must be in */
/* generalized (real) Schur canonical form, i.e. A, B are upper quasi */
/* triangular and D, E are upper triangular. */
/* The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output */
/* scaling factor chosen to avoid overflow. */
/* In matrix notation (1) is equivalent to solve Zx = scale b, where */
/* Z is defined as */
/* Z = [ kron(In, A) -kron(B', Im) ] (2) */
/* [ kron(In, D) -kron(E', Im) ]. */
/* Here Ik is the identity matrix of size k and X' is the transpose of */
/* X. kron(X, Y) is the Kronecker product between the matrices X and Y. */
/* If TRANS = 'T', DTGSYL solves the transposed system Z'*y = scale*b, */
/* which is equivalent to solve for R and L in */
/* A' * R + D' * L = scale * C (3) */
/* R * B' + L * E' = scale * (-F) */
/* This case (TRANS = 'T') is used to compute an one-norm-based estimate */
/* of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D) */
/* and (B,E), using DLACON. */
/* If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate */
/* of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the */
/* reciprocal of the smallest singular value of Z. See [1-2] for more */
/* information. */
/* This is a level 3 BLAS algorithm. */
/* Arguments */
/* ========= */
/* TRANS (input) CHARACTER*1 */
/* = 'N', solve the generalized Sylvester equation (1). */
/* = 'T', solve the 'transposed' system (3). */
/* IJOB (input) INTEGER */
/* Specifies what kind of functionality to be performed. */
/* =0: solve (1) only. */
/* =1: The functionality of 0 and 3. */
/* =2: The functionality of 0 and 4. */
/* =3: Only an estimate of Dif[(A,D), (B,E)] is computed. */
/* (look ahead strategy IJOB = 1 is used). */
/* =4: Only an estimate of Dif[(A,D), (B,E)] is computed. */
/* ( DGECON on sub-systems is used ). */
/* Not referenced if TRANS = 'T'. */
/* M (input) INTEGER */
/* The order of the matrices A and D, and the row dimension of */
/* the matrices C, F, R and L. */
/* N (input) INTEGER */
/* The order of the matrices B and E, and the column dimension */
/* of the matrices C, F, R and L. */
/* A (input) DOUBLE PRECISION array, dimension (LDA, M) */
/* The upper quasi triangular matrix A. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1, M). */
/* B (input) DOUBLE PRECISION array, dimension (LDB, N) */
/* The upper quasi triangular matrix B. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1, N). */
/* C (input/output) DOUBLE PRECISION array, dimension (LDC, N) */
/* On entry, C contains the right-hand-side of the first matrix */
/* equation in (1) or (3). */
/* On exit, if IJOB = 0, 1 or 2, C has been overwritten by */
/* the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R, */
/* the solution achieved during the computation of the */
/* Dif-estimate. */
/* LDC (input) INTEGER */
/* The leading dimension of the array C. LDC >= max(1, M). */
/* D (input) DOUBLE PRECISION array, dimension (LDD, M) */
/* The upper triangular matrix D. */
/* LDD (input) INTEGER */
/* The leading dimension of the array D. LDD >= max(1, M). */
/* E (input) DOUBLE PRECISION array, dimension (LDE, N) */
/* The upper triangular matrix E. */
/* LDE (input) INTEGER */
/* The leading dimension of the array E. LDE >= max(1, N). */
/* F (input/output) DOUBLE PRECISION array, dimension (LDF, N) */
/* On entry, F contains the right-hand-side of the second matrix */
/* equation in (1) or (3). */
/* On exit, if IJOB = 0, 1 or 2, F has been overwritten by */
/* the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L, */
/* the solution achieved during the computation of the */
/* Dif-estimate. */
/* LDF (input) INTEGER */
/* The leading dimension of the array F. LDF >= max(1, M). */
/* DIF (output) DOUBLE PRECISION */
/* On exit DIF is the reciprocal of a lower bound of the */
/* reciprocal of the Dif-function, i.e. DIF is an upper bound of */
/* Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2). */
/* IF IJOB = 0 or TRANS = 'T', DIF is not touched. */
/* SCALE (output) DOUBLE PRECISION */
/* On exit SCALE is the scaling factor in (1) or (3). */
/* If 0 < SCALE < 1, C and F hold the solutions R and L, resp., */
/* to a slightly perturbed system but the input matrices A, B, D */
/* and E have not been changed. If SCALE = 0, C and F hold the */
/* solutions R and L, respectively, to the homogeneous system */
/* with C = F = 0. Normally, SCALE = 1. */
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */
/* If IJOB = 0, WORK is not referenced. Otherwise, */
/* on exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK > = 1. */
/* If IJOB = 1 or 2 and TRANS = 'N', LWORK >= 2*M*N. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* IWORK (workspace) INTEGER array, dimension (M+N+6) */
/* INFO (output) INTEGER */
/* =0: successful exit */
/* <0: If INFO = -i, the i-th argument had an illegal value. */
/* >0: (A, D) and (B, E) have common or close eigenvalues. */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/* Umea University, S-901 87 Umea, Sweden. */
/* [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
/* for Solving the Generalized Sylvester Equation and Estimating the */
/* Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
/* Department of Computing Science, Umea University, S-901 87 Umea, */
/* Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
/* Note 75. To appear in ACM Trans. on Math. Software, Vol 22, */
/* No 1, 1996. */
/* [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester */
/* Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal. */
/* Appl., 15(4):1045-1060, 1994 */
/* [3] B. Kagstrom and L. Westin, Generalized Schur Methods with */
/* Condition Estimators for Solving the Generalized Sylvester */
/* Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, */
/* July 1989, pp 745-751. */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ZERO, ONE >*/
/*< PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL LQUERY, NOTRAN >*/
/*< >*/
/*< DOUBLE PRECISION DSCALE, DSUM, SCALE2, SCALOC >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< INTEGER ILAENV >*/
/*< EXTERNAL LSAME, ILAENV >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL DCOPY, DGEMM, DLACPY, DSCAL, DTGSY2, XERBLA >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC DBLE, MAX, SQRT >*/
/* .. */
/* .. Executable Statements .. */
/* Decode and test input parameters */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
d_dim1 = *ldd;
d_offset = 1 + d_dim1;
d__ -= d_offset;
e_dim1 = *lde;
e_offset = 1 + e_dim1;
e -= e_offset;
f_dim1 = *ldf;
f_offset = 1 + f_dim1;
f -= f_offset;
--work;
--iwork;
/* Function Body */
*info = 0;
/*< NOTRAN = LSAME( TRANS, 'N' ) >*/
notran = lsame_(trans, "N", (ftnlen)1, (ftnlen)1);
/*< LQUERY = ( LWORK.EQ.-1 ) >*/
lquery = *lwork == -1;
/*< IF( ( IJOB.EQ.1 .OR. IJOB.EQ.2 ) .AND. NOTRAN ) THEN >*/
if ((*ijob == 1 || *ijob == 2) && notran) {
/*< LWMIN = MAX( 1, 2*M*N ) >*/
/* Computing MAX */
i__1 = 1, i__2 = (*m << 1) * *n;
lwmin = max(i__1,i__2);
/*< ELSE >*/
} else {
/*< LWMIN = 1 >*/
lwmin = 1;
/*< END IF >*/
}
/*< IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN >*/
if (! notran && ! lsame_(trans, "T", (ftnlen)1, (ftnlen)1)) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.4 ) ) THEN >*/
} else if (*ijob < 0 || *ijob > 4) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( M.LE.0 ) THEN >*/
} else if (*m <= 0) {
/*< INFO = -3 >*/
*info = -3;
/*< ELSE IF( N.LE.0 ) THEN >*/
} else if (*n <= 0) {
/*< INFO = -4 >*/
*info = -4;
/*< ELSE IF( LDA.LT.MAX( 1, M ) ) THEN >*/
} else if (*lda < max(1,*m)) {
/*< INFO = -6 >*/
*info = -6;
/*< ELSE IF( LDB.LT.MAX( 1, N ) ) THEN >*/
} else if (*ldb < max(1,*n)) {
/*< INFO = -8 >*/
*info = -8;
/*< ELSE IF( LDC.LT.MAX( 1, M ) ) THEN >*/
} else if (*ldc < max(1,*m)) {
/*< INFO = -10 >*/
*info = -10;
/*< ELSE IF( LDD.LT.MAX( 1, M ) ) THEN >*/
} else if (*ldd < max(1,*m)) {
/*< INFO = -12 >*/
*info = -12;
/*< ELSE IF( LDE.LT.MAX( 1, N ) ) THEN >*/
} else if (*lde < max(1,*n)) {
/*< INFO = -14 >*/
*info = -14;
/*< ELSE IF( LDF.LT.MAX( 1, M ) ) THEN >*/
} else if (*ldf < max(1,*m)) {
/*< INFO = -16 >*/
*info = -16;
/*< ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN >*/
} else if (*lwork < lwmin && ! lquery) {
/*< INFO = -20 >*/
*info = -20;
/*< END IF >*/
}
/*< IF( INFO.EQ.0 ) THEN >*/
if (*info == 0) {
/*< WORK( 1 ) = LWMIN >*/
work[1] = (doublereal) lwmin;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'DTGSYL', -INFO ) >*/
i__1 = -(*info);
xerbla_("DTGSYL", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< ELSE IF( LQUERY ) THEN >*/
} else if (lquery) {
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Determine optimal block sizes MB and NB */
/*< MB = ILAENV( 2, 'DTGSYL', TRANS, M, N, -1, -1 ) >*/
mb = ilaenv_(&c__2, "DTGSYL", trans, m, n, &c_n1, &c_n1, (ftnlen)6, (
ftnlen)1);
/*< NB = ILAENV( 5, 'DTGSYL', TRANS, M, N, -1, -1 ) >*/
nb = ilaenv_(&c__5, "DTGSYL", trans, m, n, &c_n1, &c_n1, (ftnlen)6, (
ftnlen)1);
/*< ISOLVE = 1 >*/
isolve = 1;
/*< IFUNC = 0 >*/
ifunc = 0;
/*< IF( IJOB.GE.3 .AND. NOTRAN ) THEN >*/
if (*ijob >= 3 && notran) {
/*< IFUNC = IJOB - 2 >*/
ifunc = *ijob - 2;
/*< DO 10 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< CALL DCOPY( M, ZERO, 0, C( 1, J ), 1 ) >*/
dcopy_(m, &c_b14, &c__0, &c__[j * c_dim1 + 1], &c__1);
/*< CALL DCOPY( M, ZERO, 0, F( 1, J ), 1 ) >*/
dcopy_(m, &c_b14, &c__0, &f[j * f_dim1 + 1], &c__1);
/*< 10 CONTINUE >*/
/* L10: */
}
/*< ELSE IF( IJOB.GE.1 .AND. NOTRAN ) THEN >*/
} else if (*ijob >= 1 && notran) {
/*< ISOLVE = 2 >*/
isolve = 2;
/*< END IF >*/
}
/*< >*/
if ((mb <= 1 && nb <= 1) || (mb >= *m && nb >= *n)) {
/*< DO 30 IROUND = 1, ISOLVE >*/
i__1 = isolve;
for (iround = 1; iround <= i__1; ++iround) {
/* Use unblocked Level 2 solver */
/*< DSCALE = ZERO >*/
dscale = 0.;
/*< DSUM = ONE >*/
dsum = 1.;
/*< PQ = 0 >*/
pq = 0;
/*< >*/
dtgsy2_(trans, &ifunc, m, n, &a[a_offset], lda, &b[b_offset], ldb,
&c__[c_offset], ldc, &d__[d_offset], ldd, &e[e_offset],
lde, &f[f_offset], ldf, scale, &dsum, &dscale, &iwork[1],
&pq, info, (ftnlen)1);
/*< IF( DSCALE.NE.ZERO ) THEN >*/
if (dscale != 0.) {
/*< IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN >*/
if (*ijob == 1 || *ijob == 3) {
/*< DIF = SQRT( DBLE( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) ) >*/
*dif = sqrt((doublereal) ((*m << 1) * *n)) / (dscale *
sqrt(dsum));
/*< ELSE >*/
} else {
/*< DIF = SQRT( DBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) ) >*/
*dif = sqrt((doublereal) pq) / (dscale * sqrt(dsum));
/*< END IF >*/
}
/*< END IF >*/
}
/*< IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN >*/
if (isolve == 2 && iround == 1) {
/*< IFUNC = IJOB >*/
ifunc = *ijob;
/*< SCALE2 = SCALE >*/
scale2 = *scale;
/*< CALL DLACPY( 'F', M, N, C, LDC, WORK, M ) >*/
dlacpy_("F", m, n, &c__[c_offset], ldc, &work[1], m, (ftnlen)
1);
/*< CALL DLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M ) >*/
dlacpy_("F", m, n, &f[f_offset], ldf, &work[*m * *n + 1], m, (
ftnlen)1);
/*< DO 20 J = 1, N >*/
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
/*< CALL DCOPY( M, ZERO, 0, C( 1, J ), 1 ) >*/
dcopy_(m, &c_b14, &c__0, &c__[j * c_dim1 + 1], &c__1);
/*< CALL DCOPY( M, ZERO, 0, F( 1, J ), 1 ) >*/
dcopy_(m, &c_b14, &c__0, &f[j * f_dim1 + 1], &c__1);
/*< 20 CONTINUE >*/
/* L20: */
}
/*< ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN >*/
} else if (isolve == 2 && iround == 2) {
/*< CALL DLACPY( 'F', M, N, WORK, M, C, LDC ) >*/
dlacpy_("F", m, n, &work[1], m, &c__[c_offset], ldc, (ftnlen)
1);
/*< CALL DLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF ) >*/
dlacpy_("F", m, n, &work[*m * *n + 1], m, &f[f_offset], ldf, (
ftnlen)1);
/*< SCALE = SCALE2 >*/
*scale = scale2;
/*< END IF >*/
}
/*< 30 CONTINUE >*/
/* L30: */
}
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Determine block structure of A */
/*< P = 0 >*/
p = 0;
/*< I = 1 >*/
i__ = 1;
/*< 40 CONTINUE >*/
L40:
/*< >*/
if (i__ > *m) {
goto L50;
}
/*< P = P + 1 >*/
++p;
/*< IWORK( P ) = I >*/
iwork[p] = i__;
/*< I = I + MB >*/
i__ += mb;
/*< >*/
if (i__ >= *m) {
goto L50;
}
/*< >*/
if (a[i__ + (i__ - 1) * a_dim1] != 0.) {
++i__;
}
/*< GO TO 40 >*/
goto L40;
/*< 50 CONTINUE >*/
L50:
/*< IWORK( P+1 ) = M + 1 >*/
iwork[p + 1] = *m + 1;
/*< >*/
if (iwork[p] == iwork[p + 1]) {
--p;
}
/* Determine block structure of B */
/*< Q = P + 1 >*/
q = p + 1;
/*< J = 1 >*/
j = 1;
/*< 60 CONTINUE >*/
L60:
/*< >*/
if (j > *n) {
goto L70;
}
/*< Q = Q + 1 >*/
++q;
/*< IWORK( Q ) = J >*/
iwork[q] = j;
/*< J = J + NB >*/
j += nb;
/*< >*/
if (j >= *n) {
goto L70;
}
/*< >*/
if (b[j + (j - 1) * b_dim1] != 0.) {
++j;
}
/*< GO TO 60 >*/
goto L60;
/*< 70 CONTINUE >*/
L70:
/*< IWORK( Q+1 ) = N + 1 >*/
iwork[q + 1] = *n + 1;
/*< >*/
if (iwork[q] == iwork[q + 1]) {
--q;
}
/*< IF( NOTRAN ) THEN >*/
if (notran) {
/*< DO 150 IROUND = 1, ISOLVE >*/
i__1 = isolve;
for (iround = 1; iround <= i__1; ++iround) {
/* Solve (I, J)-subsystem */
/* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) */
/* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) */
/* for I = P, P - 1,..., 1; J = 1, 2,..., Q */
/*< DSCALE = ZERO >*/
dscale = 0.;
/*< DSUM = ONE >*/
dsum = 1.;
/*< PQ = 0 >*/
pq = 0;
/*< SCALE = ONE >*/
*scale = 1.;
/*< DO 130 J = P + 2, Q >*/
i__2 = q;
for (j = p + 2; j <= i__2; ++j) {
/*< JS = IWORK( J ) >*/
js = iwork[j];
/*< JE = IWORK( J+1 ) - 1 >*/
je = iwork[j + 1] - 1;
/*< NB = JE - JS + 1 >*/
nb = je - js + 1;
/*< DO 120 I = P, 1, -1 >*/
for (i__ = p; i__ >= 1; --i__) {
/*< IS = IWORK( I ) >*/
is = iwork[i__];
/*< IE = IWORK( I+1 ) - 1 >*/
ie = iwork[i__ + 1] - 1;
/*< MB = IE - IS + 1 >*/
mb = ie - is + 1;
/*< PPQQ = 0 >*/
ppqq = 0;
/*< >*/
dtgsy2_(trans, &ifunc, &mb, &nb, &a[is + is * a_dim1],
lda, &b[js + js * b_dim1], ldb, &c__[is + js *
c_dim1], ldc, &d__[is + is * d_dim1], ldd, &e[js
+ js * e_dim1], lde, &f[is + js * f_dim1], ldf, &
scaloc, &dsum, &dscale, &iwork[q + 2], &ppqq, &
linfo, (ftnlen)1);
/*< >*/
if (linfo > 0) {
*info = linfo;
}
/*< PQ = PQ + PPQQ >*/
pq += ppqq;
/*< IF( SCALOC.NE.ONE ) THEN >*/
if (scaloc != 1.) {
/*< DO 80 K = 1, JS - 1 >*/
i__3 = js - 1;
for (k = 1; k <= i__3; ++k) {
/*< CALL DSCAL( M, SCALOC, C( 1, K ), 1 ) >*/
dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
/*< CALL DSCAL( M, SCALOC, F( 1, K ), 1 ) >*/
dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
/*< 80 CONTINUE >*/
/* L80: */
}
/*< DO 90 K = JS, JE >*/
i__3 = je;
for (k = js; k <= i__3; ++k) {
/*< CALL DSCAL( IS-1, SCALOC, C( 1, K ), 1 ) >*/
i__4 = is - 1;
dscal_(&i__4, &scaloc, &c__[k * c_dim1 + 1], &
c__1);
/*< CALL DSCAL( IS-1, SCALOC, F( 1, K ), 1 ) >*/
i__4 = is - 1;
dscal_(&i__4, &scaloc, &f[k * f_dim1 + 1], &c__1);
/*< 90 CONTINUE >*/
/* L90: */
}
/*< DO 100 K = JS, JE >*/
i__3 = je;
for (k = js; k <= i__3; ++k) {
/*< CALL DSCAL( M-IE, SCALOC, C( IE+1, K ), 1 ) >*/
i__4 = *m - ie;
dscal_(&i__4, &scaloc, &c__[ie + 1 + k * c_dim1],
&c__1);
/*< CALL DSCAL( M-IE, SCALOC, F( IE+1, K ), 1 ) >*/
i__4 = *m - ie;
dscal_(&i__4, &scaloc, &f[ie + 1 + k * f_dim1], &
c__1);
/*< 100 CONTINUE >*/
/* L100: */
}
/*< DO 110 K = JE + 1, N >*/
i__3 = *n;
for (k = je + 1; k <= i__3; ++k) {
/*< CALL DSCAL( M, SCALOC, C( 1, K ), 1 ) >*/
dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
/*< CALL DSCAL( M, SCALOC, F( 1, K ), 1 ) >*/
dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
/*< 110 CONTINUE >*/
/* L110: */
}
/*< SCALE = SCALE*SCALOC >*/
*scale *= scaloc;
/*< END IF >*/
}
/* Substitute R(I, J) and L(I, J) into remaining */
/* equation. */
/*< IF( I.GT.1 ) THEN >*/
if (i__ > 1) {
/*< >*/
i__3 = is - 1;
dgemm_("N", "N", &i__3, &nb, &mb, &c_b53, &a[is *
a_dim1 + 1], lda, &c__[is + js * c_dim1], ldc,
&c_b54, &c__[js * c_dim1 + 1], ldc, (ftnlen)
1, (ftnlen)1);
/*< >*/
i__3 = is - 1;
dgemm_("N", "N", &i__3, &nb, &mb, &c_b53, &d__[is *
d_dim1 + 1], ldd, &c__[is + js * c_dim1], ldc,
&c_b54, &f[js * f_dim1 + 1], ldf, (ftnlen)1,
(ftnlen)1);
/*< END IF >*/
}
/*< IF( J.LT.Q ) THEN >*/
if (j < q) {
/*< >*/
i__3 = *n - je;
dgemm_("N", "N", &mb, &i__3, &nb, &c_b54, &f[is + js *
f_dim1], ldf, &b[js + (je + 1) * b_dim1],
ldb, &c_b54, &c__[is + (je + 1) * c_dim1],
ldc, (ftnlen)1, (ftnlen)1);
/*< >*/
i__3 = *n - je;
dgemm_("N", "N", &mb, &i__3, &nb, &c_b54, &f[is + js *
f_dim1], ldf, &e[js + (je + 1) * e_dim1],
lde, &c_b54, &f[is + (je + 1) * f_dim1], ldf,
(ftnlen)1, (ftnlen)1);
/*< END IF >*/
}
/*< 120 CONTINUE >*/
/* L120: */
}
/*< 130 CONTINUE >*/
/* L130: */
}
/*< IF( DSCALE.NE.ZERO ) THEN >*/
if (dscale != 0.) {
/*< IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN >*/
if (*ijob == 1 || *ijob == 3) {
/*< DIF = SQRT( DBLE( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) ) >*/
*dif = sqrt((doublereal) ((*m << 1) * *n)) / (dscale *
sqrt(dsum));
/*< ELSE >*/
} else {
/*< DIF = SQRT( DBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) ) >*/
*dif = sqrt((doublereal) pq) / (dscale * sqrt(dsum));
/*< END IF >*/
}
/*< END IF >*/
}
/*< IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN >*/
if (isolve == 2 && iround == 1) {
/*< IFUNC = IJOB >*/
ifunc = *ijob;
/*< SCALE2 = SCALE >*/
scale2 = *scale;
/*< CALL DLACPY( 'F', M, N, C, LDC, WORK, M ) >*/
dlacpy_("F", m, n, &c__[c_offset], ldc, &work[1], m, (ftnlen)
1);
/*< CALL DLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M ) >*/
dlacpy_("F", m, n, &f[f_offset], ldf, &work[*m * *n + 1], m, (
ftnlen)1);
/*< DO 140 J = 1, N >*/
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
/*< CALL DCOPY( M, ZERO, 0, C( 1, J ), 1 ) >*/
dcopy_(m, &c_b14, &c__0, &c__[j * c_dim1 + 1], &c__1);
/*< CALL DCOPY( M, ZERO, 0, F( 1, J ), 1 ) >*/
dcopy_(m, &c_b14, &c__0, &f[j * f_dim1 + 1], &c__1);
/*< 140 CONTINUE >*/
/* L140: */
}
/*< ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN >*/
} else if (isolve == 2 && iround == 2) {
/*< CALL DLACPY( 'F', M, N, WORK, M, C, LDC ) >*/
dlacpy_("F", m, n, &work[1], m, &c__[c_offset], ldc, (ftnlen)
1);
/*< CALL DLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF ) >*/
dlacpy_("F", m, n, &work[*m * *n + 1], m, &f[f_offset], ldf, (
ftnlen)1);
/*< SCALE = SCALE2 >*/
*scale = scale2;
/*< END IF >*/
}
/*< 150 CONTINUE >*/
/* L150: */
}
/*< ELSE >*/
} else {
/* Solve transposed (I, J)-subsystem */
/* A(I, I)' * R(I, J) + D(I, I)' * L(I, J) = C(I, J) */
/* R(I, J) * B(J, J)' + L(I, J) * E(J, J)' = -F(I, J) */
/* for I = 1,2,..., P; J = Q, Q-1,..., 1 */
/*< SCALE = ONE >*/
*scale = 1.;
/*< DO 210 I = 1, P >*/
i__1 = p;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< IS = IWORK( I ) >*/
is = iwork[i__];
/*< IE = IWORK( I+1 ) - 1 >*/
ie = iwork[i__ + 1] - 1;
/*< MB = IE - IS + 1 >*/
mb = ie - is + 1;
/*< DO 200 J = Q, P + 2, -1 >*/
i__2 = p + 2;
for (j = q; j >= i__2; --j) {
/*< JS = IWORK( J ) >*/
js = iwork[j];
/*< JE = IWORK( J+1 ) - 1 >*/
je = iwork[j + 1] - 1;
/*< NB = JE - JS + 1 >*/
nb = je - js + 1;
/*< >*/
dtgsy2_(trans, &ifunc, &mb, &nb, &a[is + is * a_dim1], lda, &
b[js + js * b_dim1], ldb, &c__[is + js * c_dim1], ldc,
&d__[is + is * d_dim1], ldd, &e[js + js * e_dim1],
lde, &f[is + js * f_dim1], ldf, &scaloc, &dsum, &
dscale, &iwork[q + 2], &ppqq, &linfo, (ftnlen)1);
/*< >*/
if (linfo > 0) {
*info = linfo;
}
/*< IF( SCALOC.NE.ONE ) THEN >*/
if (scaloc != 1.) {
/*< DO 160 K = 1, JS - 1 >*/
i__3 = js - 1;
for (k = 1; k <= i__3; ++k) {
/*< CALL DSCAL( M, SCALOC, C( 1, K ), 1 ) >*/
dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
/*< CALL DSCAL( M, SCALOC, F( 1, K ), 1 ) >*/
dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
/*< 160 CONTINUE >*/
/* L160: */
}
/*< DO 170 K = JS, JE >*/
i__3 = je;
for (k = js; k <= i__3; ++k) {
/*< CALL DSCAL( IS-1, SCALOC, C( 1, K ), 1 ) >*/
i__4 = is - 1;
dscal_(&i__4, &scaloc, &c__[k * c_dim1 + 1], &c__1);
/*< CALL DSCAL( IS-1, SCALOC, F( 1, K ), 1 ) >*/
i__4 = is - 1;
dscal_(&i__4, &scaloc, &f[k * f_dim1 + 1], &c__1);
/*< 170 CONTINUE >*/
/* L170: */
}
/*< DO 180 K = JS, JE >*/
i__3 = je;
for (k = js; k <= i__3; ++k) {
/*< CALL DSCAL( M-IE, SCALOC, C( IE+1, K ), 1 ) >*/
i__4 = *m - ie;
dscal_(&i__4, &scaloc, &c__[ie + 1 + k * c_dim1], &
c__1);
/*< CALL DSCAL( M-IE, SCALOC, F( IE+1, K ), 1 ) >*/
i__4 = *m - ie;
dscal_(&i__4, &scaloc, &f[ie + 1 + k * f_dim1], &c__1)
;
/*< 180 CONTINUE >*/
/* L180: */
}
/*< DO 190 K = JE + 1, N >*/
i__3 = *n;
for (k = je + 1; k <= i__3; ++k) {
/*< CALL DSCAL( M, SCALOC, C( 1, K ), 1 ) >*/
dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
/*< CALL DSCAL( M, SCALOC, F( 1, K ), 1 ) >*/
dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
/*< 190 CONTINUE >*/
/* L190: */
}
/*< SCALE = SCALE*SCALOC >*/
*scale *= scaloc;
/*< END IF >*/
}
/* Substitute R(I, J) and L(I, J) into remaining equation. */
/*< IF( J.GT.P+2 ) THEN >*/
if (j > p + 2) {
/*< >*/
i__3 = js - 1;
dgemm_("N", "T", &mb, &i__3, &nb, &c_b54, &c__[is + js *
c_dim1], ldc, &b[js * b_dim1 + 1], ldb, &c_b54, &
f[is + f_dim1], ldf, (ftnlen)1, (ftnlen)1);
/*< >*/
i__3 = js - 1;
dgemm_("N", "T", &mb, &i__3, &nb, &c_b54, &f[is + js *
f_dim1], ldf, &e[js * e_dim1 + 1], lde, &c_b54, &
f[is + f_dim1], ldf, (ftnlen)1, (ftnlen)1);
/*< END IF >*/
}
/*< IF( I.LT.P ) THEN >*/
if (i__ < p) {
/*< >*/
i__3 = *m - ie;
dgemm_("T", "N", &i__3, &nb, &mb, &c_b53, &a[is + (ie + 1)
* a_dim1], lda, &c__[is + js * c_dim1], ldc, &
c_b54, &c__[ie + 1 + js * c_dim1], ldc, (ftnlen)1,
(ftnlen)1);
/*< >*/
i__3 = *m - ie;
dgemm_("T", "N", &i__3, &nb, &mb, &c_b53, &d__[is + (ie +
1) * d_dim1], ldd, &f[is + js * f_dim1], ldf, &
c_b54, &c__[ie + 1 + js * c_dim1], ldc, (ftnlen)1,
(ftnlen)1);
/*< END IF >*/
}
/*< 200 CONTINUE >*/
/* L200: */
}
/*< 210 CONTINUE >*/
/* L210: */
}
/*< END IF >*/
}
/*< WORK( 1 ) = LWMIN >*/
work[1] = (doublereal) lwmin;
/*< RETURN >*/
return 0;
/* End of DTGSYL */
/*< END >*/
} /* dtgsyl_ */
#ifdef __cplusplus
}
#endif
|