1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
/* lapack/single/sgeqpf.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
/*< SUBROUTINE SGEQPF( M, N, A, LDA, JPVT, TAU, WORK, INFO ) >*/
/* Subroutine */ int sgeqpf_(integer *m, integer *n, real *a, integer *lda,
integer *jpvt, real *tau, real *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
real r__1, r__2;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j, ma, mn;
real aii;
integer pvt;
real temp, temp2;
extern doublereal snrm2_(integer *, real *, integer *);
extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *,
integer *, real *, real *, integer *, real *, ftnlen);
integer itemp;
extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *,
integer *), sgeqr2_(integer *, integer *, real *, integer *, real
*, real *, integer *), sorm2r_(char *, char *, integer *, integer
*, integer *, real *, integer *, real *, real *, integer *, real *
, integer *, ftnlen, ftnlen), xerbla_(char *, integer *, ftnlen),
slarfg_(integer *, real *, real *, integer *, real *);
extern integer isamax_(integer *, real *, integer *);
/* -- LAPACK test routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* March 31, 1993 */
/* .. Scalar Arguments .. */
/*< INTEGER INFO, LDA, M, N >*/
/* .. */
/* .. Array Arguments .. */
/*< INTEGER JPVT( * ) >*/
/*< REAL A( LDA, * ), TAU( * ), WORK( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* This routine is deprecated and has been replaced by routine SGEQP3. */
/* SGEQPF computes a QR factorization with column pivoting of a */
/* real M-by-N matrix A: A*P = Q*R. */
/* Arguments */
/* ========= */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0 */
/* A (input/output) REAL array, dimension (LDA,N) */
/* On entry, the M-by-N matrix A. */
/* On exit, the upper triangle of the array contains the */
/* min(M,N)-by-N upper triangular matrix R; the elements */
/* below the diagonal, together with the array TAU, */
/* represent the orthogonal matrix Q as a product of */
/* min(m,n) elementary reflectors. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* JPVT (input/output) INTEGER array, dimension (N) */
/* On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
/* to the front of A*P (a leading column); if JPVT(i) = 0, */
/* the i-th column of A is a free column. */
/* On exit, if JPVT(i) = k, then the i-th column of A*P */
/* was the k-th column of A. */
/* TAU (output) REAL array, dimension (min(M,N)) */
/* The scalar factors of the elementary reflectors. */
/* WORK (workspace) REAL array, dimension (3*N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* Further Details */
/* =============== */
/* The matrix Q is represented as a product of elementary reflectors */
/* Q = H(1) H(2) . . . H(n) */
/* Each H(i) has the form */
/* H = I - tau * v * v' */
/* where tau is a real scalar, and v is a real vector with */
/* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). */
/* The matrix P is represented in jpvt as follows: If */
/* jpvt(j) = i */
/* then the jth column of P is the ith canonical unit vector. */
/* ===================================================================== */
/* .. Parameters .. */
/*< REAL ZERO, ONE >*/
/*< PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< INTEGER I, ITEMP, J, MA, MN, PVT >*/
/*< REAL AII, TEMP, TEMP2 >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL SGEQR2, SLARF, SLARFG, SORM2R, SSWAP, XERBLA >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, MAX, MIN, SQRT >*/
/* .. */
/* .. External Functions .. */
/*< INTEGER ISAMAX >*/
/*< REAL SNRM2 >*/
/*< EXTERNAL ISAMAX, SNRM2 >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--jpvt;
--tau;
--work;
/* Function Body */
*info = 0;
/*< IF( M.LT.0 ) THEN >*/
if (*m < 0) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( LDA.LT.MAX( 1, M ) ) THEN >*/
} else if (*lda < max(1,*m)) {
/*< INFO = -4 >*/
*info = -4;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'SGEQPF', -INFO ) >*/
i__1 = -(*info);
xerbla_("SGEQPF", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/*< MN = MIN( M, N ) >*/
mn = min(*m,*n);
/* Move initial columns up front */
/*< ITEMP = 1 >*/
itemp = 1;
/*< DO 10 I = 1, N >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< IF( JPVT( I ).NE.0 ) THEN >*/
if (jpvt[i__] != 0) {
/*< IF( I.NE.ITEMP ) THEN >*/
if (i__ != itemp) {
/*< CALL SSWAP( M, A( 1, I ), 1, A( 1, ITEMP ), 1 ) >*/
sswap_(m, &a[i__ * a_dim1 + 1], &c__1, &a[itemp * a_dim1 + 1],
&c__1);
/*< JPVT( I ) = JPVT( ITEMP ) >*/
jpvt[i__] = jpvt[itemp];
/*< JPVT( ITEMP ) = I >*/
jpvt[itemp] = i__;
/*< ELSE >*/
} else {
/*< JPVT( I ) = I >*/
jpvt[i__] = i__;
/*< END IF >*/
}
/*< ITEMP = ITEMP + 1 >*/
++itemp;
/*< ELSE >*/
} else {
/*< JPVT( I ) = I >*/
jpvt[i__] = i__;
/*< END IF >*/
}
/*< 10 CONTINUE >*/
/* L10: */
}
/*< ITEMP = ITEMP - 1 >*/
--itemp;
/* Compute the QR factorization and update remaining columns */
/*< IF( ITEMP.GT.0 ) THEN >*/
if (itemp > 0) {
/*< MA = MIN( ITEMP, M ) >*/
ma = min(itemp,*m);
/*< CALL SGEQR2( M, MA, A, LDA, TAU, WORK, INFO ) >*/
sgeqr2_(m, &ma, &a[a_offset], lda, &tau[1], &work[1], info);
/*< IF( MA.LT.N ) THEN >*/
if (ma < *n) {
/*< >*/
i__1 = *n - ma;
sorm2r_("Left", "Transpose", m, &i__1, &ma, &a[a_offset], lda, &
tau[1], &a[(ma + 1) * a_dim1 + 1], lda, &work[1], info, (
ftnlen)4, (ftnlen)9);
/*< END IF >*/
}
/*< END IF >*/
}
/*< IF( ITEMP.LT.MN ) THEN >*/
if (itemp < mn) {
/* Initialize partial column norms. The first n elements of */
/* work store the exact column norms. */
/*< DO 20 I = ITEMP + 1, N >*/
i__1 = *n;
for (i__ = itemp + 1; i__ <= i__1; ++i__) {
/*< WORK( I ) = SNRM2( M-ITEMP, A( ITEMP+1, I ), 1 ) >*/
i__2 = *m - itemp;
work[i__] = snrm2_(&i__2, &a[itemp + 1 + i__ * a_dim1], &c__1);
/*< WORK( N+I ) = WORK( I ) >*/
work[*n + i__] = work[i__];
/*< 20 CONTINUE >*/
/* L20: */
}
/* Compute factorization */
/*< DO 40 I = ITEMP + 1, MN >*/
i__1 = mn;
for (i__ = itemp + 1; i__ <= i__1; ++i__) {
/* Determine ith pivot column and swap if necessary */
/*< PVT = ( I-1 ) + ISAMAX( N-I+1, WORK( I ), 1 ) >*/
i__2 = *n - i__ + 1;
pvt = i__ - 1 + isamax_(&i__2, &work[i__], &c__1);
/*< IF( PVT.NE.I ) THEN >*/
if (pvt != i__) {
/*< CALL SSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 ) >*/
sswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
c__1);
/*< ITEMP = JPVT( PVT ) >*/
itemp = jpvt[pvt];
/*< JPVT( PVT ) = JPVT( I ) >*/
jpvt[pvt] = jpvt[i__];
/*< JPVT( I ) = ITEMP >*/
jpvt[i__] = itemp;
/*< WORK( PVT ) = WORK( I ) >*/
work[pvt] = work[i__];
/*< WORK( N+PVT ) = WORK( N+I ) >*/
work[*n + pvt] = work[*n + i__];
/*< END IF >*/
}
/* Generate elementary reflector H(i) */
/*< IF( I.LT.M ) THEN >*/
if (i__ < *m) {
/*< CALL SLARFG( M-I+1, A( I, I ), A( I+1, I ), 1, TAU( I ) ) >*/
i__2 = *m - i__ + 1;
slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + 1 + i__ *
a_dim1], &c__1, &tau[i__]);
/*< ELSE >*/
} else {
/*< CALL SLARFG( 1, A( M, M ), A( M, M ), 1, TAU( M ) ) >*/
slarfg_(&c__1, &a[*m + *m * a_dim1], &a[*m + *m * a_dim1], &
c__1, &tau[*m]);
/*< END IF >*/
}
/*< IF( I.LT.N ) THEN >*/
if (i__ < *n) {
/* Apply H(i) to A(i:m,i+1:n) from the left */
/*< AII = A( I, I ) >*/
aii = a[i__ + i__ * a_dim1];
/*< A( I, I ) = ONE >*/
a[i__ + i__ * a_dim1] = (float)1.;
/*< >*/
i__2 = *m - i__ + 1;
i__3 = *n - i__;
slarf_("LEFT", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &
tau[i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[(*
n << 1) + 1], (ftnlen)4);
/*< A( I, I ) = AII >*/
a[i__ + i__ * a_dim1] = aii;
/*< END IF >*/
}
/* Update partial column norms */
/*< DO 30 J = I + 1, N >*/
i__2 = *n;
for (j = i__ + 1; j <= i__2; ++j) {
/*< IF( WORK( J ).NE.ZERO ) THEN >*/
if (work[j] != (float)0.) {
/*< TEMP = ONE - ( ABS( A( I, J ) ) / WORK( J ) )**2 >*/
/* Computing 2nd power */
r__2 = (r__1 = a[i__ + j * a_dim1], dabs(r__1)) / work[j];
temp = (float)1. - r__2 * r__2;
/*< TEMP = MAX( TEMP, ZERO ) >*/
temp = dmax(temp,(float)0.);
/*< TEMP2 = ONE + 0.05*TEMP*( WORK( J ) / WORK( N+J ) )**2 >*/
/* Computing 2nd power */
r__1 = work[j] / work[*n + j];
temp2 = temp * (float).05 * (r__1 * r__1) + (float)1.;
/*< IF( TEMP2.EQ.ONE ) THEN >*/
if (temp2 == (float)1.) {
/*< IF( M-I.GT.0 ) THEN >*/
if (*m - i__ > 0) {
/*< WORK( J ) = SNRM2( M-I, A( I+1, J ), 1 ) >*/
i__3 = *m - i__;
work[j] = snrm2_(&i__3, &a[i__ + 1 + j * a_dim1],
&c__1);
/*< WORK( N+J ) = WORK( J ) >*/
work[*n + j] = work[j];
/*< ELSE >*/
} else {
/*< WORK( J ) = ZERO >*/
work[j] = (float)0.;
/*< WORK( N+J ) = ZERO >*/
work[*n + j] = (float)0.;
/*< END IF >*/
}
/*< ELSE >*/
} else {
/*< WORK( J ) = WORK( J )*SQRT( TEMP ) >*/
work[j] *= sqrt(temp);
/*< END IF >*/
}
/*< END IF >*/
}
/*< 30 CONTINUE >*/
/* L30: */
}
/*< 40 CONTINUE >*/
/* L40: */
}
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of SGEQPF */
/*< END >*/
} /* sgeqpf_ */
#ifdef __cplusplus
}
#endif
|