1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/* lapack/single/sgerq2.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< SUBROUTINE SGERQ2( M, N, A, LDA, TAU, WORK, INFO ) >*/
/* Subroutine */ int sgerq2_(integer *m, integer *n, real *a, integer *lda,
real *tau, real *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
/* Local variables */
integer i__, k;
real aii;
extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *,
integer *, real *, real *, integer *, real *, ftnlen), xerbla_(
char *, integer *, ftnlen), slarfg_(integer *, real *, real *,
integer *, real *);
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* February 29, 1992 */
/* .. Scalar Arguments .. */
/*< INTEGER INFO, LDA, M, N >*/
/* .. */
/* .. Array Arguments .. */
/*< REAL A( LDA, * ), TAU( * ), WORK( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* SGERQ2 computes an RQ factorization of a real m by n matrix A: */
/* A = R * Q. */
/* Arguments */
/* ========= */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0. */
/* A (input/output) REAL array, dimension (LDA,N) */
/* On entry, the m by n matrix A. */
/* On exit, if m <= n, the upper triangle of the subarray */
/* A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; */
/* if m >= n, the elements on and above the (m-n)-th subdiagonal */
/* contain the m by n upper trapezoidal matrix R; the remaining */
/* elements, with the array TAU, represent the orthogonal matrix */
/* Q as a product of elementary reflectors (see Further */
/* Details). */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* TAU (output) REAL array, dimension (min(M,N)) */
/* The scalar factors of the elementary reflectors (see Further */
/* Details). */
/* WORK (workspace) REAL array, dimension (M) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* Further Details */
/* =============== */
/* The matrix Q is represented as a product of elementary reflectors */
/* Q = H(1) H(2) . . . H(k), where k = min(m,n). */
/* Each H(i) has the form */
/* H(i) = I - tau * v * v' */
/* where tau is a real scalar, and v is a real vector with */
/* v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in */
/* A(m-k+i,1:n-k+i-1), and tau in TAU(i). */
/* ===================================================================== */
/* .. Parameters .. */
/*< REAL ONE >*/
/*< PARAMETER ( ONE = 1.0E+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< INTEGER I, K >*/
/*< REAL AII >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL SLARF, SLARFG, XERBLA >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC MAX, MIN >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
/*< IF( M.LT.0 ) THEN >*/
if (*m < 0) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( LDA.LT.MAX( 1, M ) ) THEN >*/
} else if (*lda < max(1,*m)) {
/*< INFO = -4 >*/
*info = -4;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'SGERQ2', -INFO ) >*/
i__1 = -(*info);
xerbla_("SGERQ2", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/*< K = MIN( M, N ) >*/
k = min(*m,*n);
/*< DO 10 I = K, 1, -1 >*/
for (i__ = k; i__ >= 1; --i__) {
/* Generate elementary reflector H(i) to annihilate */
/* A(m-k+i,1:n-k+i-1) */
/*< >*/
i__1 = *n - k + i__;
slarfg_(&i__1, &a[*m - k + i__ + (*n - k + i__) * a_dim1], &a[*m - k
+ i__ + a_dim1], lda, &tau[i__]);
/* Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right */
/*< AII = A( M-K+I, N-K+I ) >*/
aii = a[*m - k + i__ + (*n - k + i__) * a_dim1];
/*< A( M-K+I, N-K+I ) = ONE >*/
a[*m - k + i__ + (*n - k + i__) * a_dim1] = (float)1.;
/*< >*/
i__1 = *m - k + i__ - 1;
i__2 = *n - k + i__;
slarf_("Right", &i__1, &i__2, &a[*m - k + i__ + a_dim1], lda, &tau[
i__], &a[a_offset], lda, &work[1], (ftnlen)5);
/*< A( M-K+I, N-K+I ) = AII >*/
a[*m - k + i__ + (*n - k + i__) * a_dim1] = aii;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< RETURN >*/
return 0;
/* End of SGERQ2 */
/*< END >*/
} /* sgerq2_ */
#ifdef __cplusplus
}
#endif
|