1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
/* lapack/single/slapmt.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< SUBROUTINE SLAPMT( FORWRD, M, N, X, LDX, K ) >*/
/* Subroutine */ int slapmt_(logical *forwrd, integer *m, integer *n, real *x,
integer *ldx, integer *k)
{
/* System generated locals */
integer x_dim1, x_offset, i__1, i__2;
/* Local variables */
integer i__, j, ii, in;
real temp;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* March 31, 1993 */
/* .. Scalar Arguments .. */
/*< LOGICAL FORWRD >*/
/*< INTEGER LDX, M, N >*/
/* .. */
/* .. Array Arguments .. */
/*< INTEGER K( * ) >*/
/*< REAL X( LDX, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* SLAPMT rearranges the columns of the M by N matrix X as specified */
/* by the permutation K(1),K(2),...,K(N) of the integers 1,...,N. */
/* If FORWRD = .TRUE., forward permutation: */
/* X(*,K(J)) is moved X(*,J) for J = 1,2,...,N. */
/* If FORWRD = .FALSE., backward permutation: */
/* X(*,J) is moved to X(*,K(J)) for J = 1,2,...,N. */
/* Arguments */
/* ========= */
/* FORWRD (input) LOGICAL */
/* = .TRUE., forward permutation */
/* = .FALSE., backward permutation */
/* M (input) INTEGER */
/* The number of rows of the matrix X. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix X. N >= 0. */
/* X (input/output) REAL array, dimension (LDX,N) */
/* On entry, the M by N matrix X. */
/* On exit, X contains the permuted matrix X. */
/* LDX (input) INTEGER */
/* The leading dimension of the array X, LDX >= MAX(1,M). */
/* K (input) INTEGER array, dimension (N) */
/* On entry, K contains the permutation vector. */
/* ===================================================================== */
/* .. Local Scalars .. */
/*< INTEGER I, II, J, IN >*/
/*< REAL TEMP >*/
/* .. */
/* .. Executable Statements .. */
/*< >*/
/* Parameter adjustments */
x_dim1 = *ldx;
x_offset = 1 + x_dim1;
x -= x_offset;
--k;
/* Function Body */
if (*n <= 1) {
return 0;
}
/*< DO 10 I = 1, N >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< K( I ) = -K( I ) >*/
k[i__] = -k[i__];
/*< 10 CONTINUE >*/
/* L10: */
}
/*< IF( FORWRD ) THEN >*/
if (*forwrd) {
/* Forward permutation */
/*< DO 60 I = 1, N >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< >*/
if (k[i__] > 0) {
goto L40;
}
/*< J = I >*/
j = i__;
/*< K( J ) = -K( J ) >*/
k[j] = -k[j];
/*< IN = K( J ) >*/
in = k[j];
/*< 20 CONTINUE >*/
L20:
/*< >*/
if (k[in] > 0) {
goto L40;
}
/*< DO 30 II = 1, M >*/
i__2 = *m;
for (ii = 1; ii <= i__2; ++ii) {
/*< TEMP = X( II, J ) >*/
temp = x[ii + j * x_dim1];
/*< X( II, J ) = X( II, IN ) >*/
x[ii + j * x_dim1] = x[ii + in * x_dim1];
/*< X( II, IN ) = TEMP >*/
x[ii + in * x_dim1] = temp;
/*< 30 CONTINUE >*/
/* L30: */
}
/*< K( IN ) = -K( IN ) >*/
k[in] = -k[in];
/*< J = IN >*/
j = in;
/*< IN = K( IN ) >*/
in = k[in];
/*< GO TO 20 >*/
goto L20;
/*< 40 CONTINUE >*/
L40:
/*< 60 CONTINUE >*/
/* L60: */
;
}
/*< ELSE >*/
} else {
/* Backward permutation */
/*< DO 110 I = 1, N >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< >*/
if (k[i__] > 0) {
goto L100;
}
/*< K( I ) = -K( I ) >*/
k[i__] = -k[i__];
/*< J = K( I ) >*/
j = k[i__];
/*< 80 CONTINUE >*/
L80:
/*< >*/
if (j == i__) {
goto L100;
}
/*< DO 90 II = 1, M >*/
i__2 = *m;
for (ii = 1; ii <= i__2; ++ii) {
/*< TEMP = X( II, I ) >*/
temp = x[ii + i__ * x_dim1];
/*< X( II, I ) = X( II, J ) >*/
x[ii + i__ * x_dim1] = x[ii + j * x_dim1];
/*< X( II, J ) = TEMP >*/
x[ii + j * x_dim1] = temp;
/*< 90 CONTINUE >*/
/* L90: */
}
/*< K( J ) = -K( J ) >*/
k[j] = -k[j];
/*< J = K( J ) >*/
j = k[j];
/*< GO TO 80 >*/
goto L80;
/*< 100 CONTINUE >*/
L100:
/*< 110 CONTINUE >*/
/* L110: */
;
}
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of SLAPMT */
/*< END >*/
} /* slapmt_ */
#ifdef __cplusplus
}
#endif
|