1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
/* lapack/single/slarfg.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< SUBROUTINE SLARFG( N, ALPHA, X, INCX, TAU ) >*/
/* Subroutine */ int slarfg_(integer *n, real *alpha, real *x, integer *incx,
real *tau)
{
/* System generated locals */
integer i__1;
real r__1;
/* Builtin functions */
double r_sign(real *, real *);
/* Local variables */
integer j, knt;
real beta;
extern doublereal snrm2_(integer *, real *, integer *);
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
real xnorm;
extern doublereal slapy2_(real *, real *), slamch_(char *, ftnlen);
real safmin, rsafmn;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* September 30, 1994 */
/* .. Scalar Arguments .. */
/*< INTEGER INCX, N >*/
/*< REAL ALPHA, TAU >*/
/* .. */
/* .. Array Arguments .. */
/*< REAL X( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* SLARFG generates a real elementary reflector H of order n, such */
/* that */
/* H * ( alpha ) = ( beta ), H' * H = I. */
/* ( x ) ( 0 ) */
/* where alpha and beta are scalars, and x is an (n-1)-element real */
/* vector. H is represented in the form */
/* H = I - tau * ( 1 ) * ( 1 v' ) , */
/* ( v ) */
/* where tau is a real scalar and v is a real (n-1)-element */
/* vector. */
/* If the elements of x are all zero, then tau = 0 and H is taken to be */
/* the unit matrix. */
/* Otherwise 1 <= tau <= 2. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the elementary reflector. */
/* ALPHA (input/output) REAL */
/* On entry, the value alpha. */
/* On exit, it is overwritten with the value beta. */
/* X (input/output) REAL array, dimension */
/* (1+(N-2)*abs(INCX)) */
/* On entry, the vector x. */
/* On exit, it is overwritten with the vector v. */
/* INCX (input) INTEGER */
/* The increment between elements of X. INCX > 0. */
/* TAU (output) REAL */
/* The value tau. */
/* ===================================================================== */
/* .. Parameters .. */
/*< REAL ONE, ZERO >*/
/*< PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< INTEGER J, KNT >*/
/*< REAL BETA, RSAFMN, SAFMIN, XNORM >*/
/* .. */
/* .. External Functions .. */
/*< REAL SLAMCH, SLAPY2, SNRM2 >*/
/*< EXTERNAL SLAMCH, SLAPY2, SNRM2 >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, SIGN >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL SSCAL >*/
/* .. */
/* .. Executable Statements .. */
/*< IF( N.LE.1 ) THEN >*/
/* Parameter adjustments */
--x;
/* Function Body */
if (*n <= 1) {
/*< TAU = ZERO >*/
*tau = (float)0.;
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/*< XNORM = SNRM2( N-1, X, INCX ) >*/
i__1 = *n - 1;
xnorm = snrm2_(&i__1, &x[1], incx);
/*< IF( XNORM.EQ.ZERO ) THEN >*/
if (xnorm == (float)0.) {
/* H = I */
/*< TAU = ZERO >*/
*tau = (float)0.;
/*< ELSE >*/
} else {
/* general case */
/*< BETA = -SIGN( SLAPY2( ALPHA, XNORM ), ALPHA ) >*/
r__1 = slapy2_(alpha, &xnorm);
beta = -r_sign(&r__1, alpha);
/*< SAFMIN = SLAMCH( 'S' ) / SLAMCH( 'E' ) >*/
safmin = slamch_("S", (ftnlen)1) / slamch_("E", (ftnlen)1);
/*< IF( ABS( BETA ).LT.SAFMIN ) THEN >*/
if (dabs(beta) < safmin) {
/* XNORM, BETA may be inaccurate; scale X and recompute them */
/*< RSAFMN = ONE / SAFMIN >*/
rsafmn = (float)1. / safmin;
/*< KNT = 0 >*/
knt = 0;
/*< 10 CONTINUE >*/
L10:
/*< KNT = KNT + 1 >*/
++knt;
/*< CALL SSCAL( N-1, RSAFMN, X, INCX ) >*/
i__1 = *n - 1;
sscal_(&i__1, &rsafmn, &x[1], incx);
/*< BETA = BETA*RSAFMN >*/
beta *= rsafmn;
/*< ALPHA = ALPHA*RSAFMN >*/
*alpha *= rsafmn;
/*< >*/
if (dabs(beta) < safmin) {
goto L10;
}
/* New BETA is at most 1, at least SAFMIN */
/*< XNORM = SNRM2( N-1, X, INCX ) >*/
i__1 = *n - 1;
xnorm = snrm2_(&i__1, &x[1], incx);
/*< BETA = -SIGN( SLAPY2( ALPHA, XNORM ), ALPHA ) >*/
r__1 = slapy2_(alpha, &xnorm);
beta = -r_sign(&r__1, alpha);
/*< TAU = ( BETA-ALPHA ) / BETA >*/
*tau = (beta - *alpha) / beta;
/*< CALL SSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX ) >*/
i__1 = *n - 1;
r__1 = (float)1. / (*alpha - beta);
sscal_(&i__1, &r__1, &x[1], incx);
/* If ALPHA is subnormal, it may lose relative accuracy */
/*< ALPHA = BETA >*/
*alpha = beta;
/*< DO 20 J = 1, KNT >*/
i__1 = knt;
for (j = 1; j <= i__1; ++j) {
/*< ALPHA = ALPHA*SAFMIN >*/
*alpha *= safmin;
/*< 20 CONTINUE >*/
/* L20: */
}
/*< ELSE >*/
} else {
/*< TAU = ( BETA-ALPHA ) / BETA >*/
*tau = (beta - *alpha) / beta;
/*< CALL SSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX ) >*/
i__1 = *n - 1;
r__1 = (float)1. / (*alpha - beta);
sscal_(&i__1, &r__1, &x[1], incx);
/*< ALPHA = BETA >*/
*alpha = beta;
/*< END IF >*/
}
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of SLARFG */
/*< END >*/
} /* slarfg_ */
#ifdef __cplusplus
}
#endif
|