File: sorm2r.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (314 lines) | stat: -rw-r--r-- 9,046 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/* lapack/single/sorm2r.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__1 = 1;

/*<    >*/
/* Subroutine */ int sorm2r_(char *side, char *trans, integer *m, integer *n, 
        integer *k, real *a, integer *lda, real *tau, real *c__, integer *ldc,
         real *work, integer *info, ftnlen side_len, ftnlen trans_len)
{
    /* System generated locals */
    integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;

    /* Local variables */
    integer i__, i1, i2, i3, ic=0, jc=0, mi, ni, nq;
    real aii;
    logical left;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *, 
            integer *, real *, real *, integer *, real *, ftnlen), xerbla_(
            char *, integer *, ftnlen);
    logical notran;
    (void)side_len;
    (void)trans_len;

/*  -- LAPACK routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     February 29, 1992 */

/*     .. Scalar Arguments .. */
/*<       CHARACTER          SIDE, TRANS >*/
/*<       INTEGER            INFO, K, LDA, LDC, M, N >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       REAL               A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  SORM2R overwrites the general real m by n matrix C with */

/*        Q * C  if SIDE = 'L' and TRANS = 'N', or */

/*        Q'* C  if SIDE = 'L' and TRANS = 'T', or */

/*        C * Q  if SIDE = 'R' and TRANS = 'N', or */

/*        C * Q' if SIDE = 'R' and TRANS = 'T', */

/*  where Q is a real orthogonal matrix defined as the product of k */
/*  elementary reflectors */

/*        Q = H(1) H(2) . . . H(k) */

/*  as returned by SGEQRF. Q is of order m if SIDE = 'L' and of order n */
/*  if SIDE = 'R'. */

/*  Arguments */
/*  ========= */

/*  SIDE    (input) CHARACTER*1 */
/*          = 'L': apply Q or Q' from the Left */
/*          = 'R': apply Q or Q' from the Right */

/*  TRANS   (input) CHARACTER*1 */
/*          = 'N': apply Q  (No transpose) */
/*          = 'T': apply Q' (Transpose) */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix C. M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix C. N >= 0. */

/*  K       (input) INTEGER */
/*          The number of elementary reflectors whose product defines */
/*          the matrix Q. */
/*          If SIDE = 'L', M >= K >= 0; */
/*          if SIDE = 'R', N >= K >= 0. */

/*  A       (input) REAL array, dimension (LDA,K) */
/*          The i-th column must contain the vector which defines the */
/*          elementary reflector H(i), for i = 1,2,...,k, as returned by */
/*          SGEQRF in the first k columns of its array argument A. */
/*          A is modified by the routine but restored on exit. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. */
/*          If SIDE = 'L', LDA >= max(1,M); */
/*          if SIDE = 'R', LDA >= max(1,N). */

/*  TAU     (input) REAL array, dimension (K) */
/*          TAU(i) must contain the scalar factor of the elementary */
/*          reflector H(i), as returned by SGEQRF. */

/*  C       (input/output) REAL array, dimension (LDC,N) */
/*          On entry, the m by n matrix C. */
/*          On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */

/*  LDC     (input) INTEGER */
/*          The leading dimension of the array C. LDC >= max(1,M). */

/*  WORK    (workspace) REAL array, dimension */
/*                                   (N) if SIDE = 'L', */
/*                                   (M) if SIDE = 'R' */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*<       REAL               ONE >*/
/*<       PARAMETER          ( ONE = 1.0E+0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       LOGICAL            LEFT, NOTRAN >*/
/*<       INTEGER            I, I1, I2, I3, IC, JC, MI, NI, NQ >*/
/*<       REAL               AII >*/
/*     .. */
/*     .. External Functions .. */
/*<       LOGICAL            LSAME >*/
/*<       EXTERNAL           LSAME >*/
/*     .. */
/*     .. External Subroutines .. */
/*<       EXTERNAL           SLARF, XERBLA >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          MAX >*/
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

/*<       INFO = 0 >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    --work;

    /* Function Body */
    *info = 0;
/*<       LEFT = LSAME( SIDE, 'L' ) >*/
    left = lsame_(side, "L", (ftnlen)1, (ftnlen)1);
/*<       NOTRAN = LSAME( TRANS, 'N' ) >*/
    notran = lsame_(trans, "N", (ftnlen)1, (ftnlen)1);

/*     NQ is the order of Q */

/*<       IF( LEFT ) THEN >*/
    if (left) {
/*<          NQ = M >*/
        nq = *m;
/*<       ELSE >*/
    } else {
/*<          NQ = N >*/
        nq = *n;
/*<       END IF >*/
    }
/*<       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN >*/
    if (! left && ! lsame_(side, "R", (ftnlen)1, (ftnlen)1)) {
/*<          INFO = -1 >*/
        *info = -1;
/*<       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN >*/
    } else if (! notran && ! lsame_(trans, "T", (ftnlen)1, (ftnlen)1)) {
/*<          INFO = -2 >*/
        *info = -2;
/*<       ELSE IF( M.LT.0 ) THEN >*/
    } else if (*m < 0) {
/*<          INFO = -3 >*/
        *info = -3;
/*<       ELSE IF( N.LT.0 ) THEN >*/
    } else if (*n < 0) {
/*<          INFO = -4 >*/
        *info = -4;
/*<       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN >*/
    } else if (*k < 0 || *k > nq) {
/*<          INFO = -5 >*/
        *info = -5;
/*<       ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN >*/
    } else if (*lda < max(1,nq)) {
/*<          INFO = -7 >*/
        *info = -7;
/*<       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN >*/
    } else if (*ldc < max(1,*m)) {
/*<          INFO = -10 >*/
        *info = -10;
/*<       END IF >*/
    }
/*<       IF( INFO.NE.0 ) THEN >*/
    if (*info != 0) {
/*<          CALL XERBLA( 'SORM2R', -INFO ) >*/
        i__1 = -(*info);
        xerbla_("SORM2R", &i__1, (ftnlen)6);
/*<          RETURN >*/
        return 0;
/*<       END IF >*/
    }

/*     Quick return if possible */

/*<    >*/
    if (*m == 0 || *n == 0 || *k == 0) {
        return 0;
    }

/*<    >*/
    if ((left && ! notran) || (! left && notran)) {
/*<          I1 = 1 >*/
        i1 = 1;
/*<          I2 = K >*/
        i2 = *k;
/*<          I3 = 1 >*/
        i3 = 1;
/*<       ELSE >*/
    } else {
/*<          I1 = K >*/
        i1 = *k;
/*<          I2 = 1 >*/
        i2 = 1;
/*<          I3 = -1 >*/
        i3 = -1;
/*<       END IF >*/
    }

/*<       IF( LEFT ) THEN >*/
    if (left) {
/*<          NI = N >*/
        ni = *n;
/*<          JC = 1 >*/
        jc = 1;
/*<       ELSE >*/
    } else {
/*<          MI = M >*/
        mi = *m;
/*<          IC = 1 >*/
        ic = 1;
/*<       END IF >*/
    }

/*<       DO 10 I = I1, I2, I3 >*/
    i__1 = i2;
    i__2 = i3;
    for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/*<          IF( LEFT ) THEN >*/
        if (left) {

/*           H(i) is applied to C(i:m,1:n) */

/*<             MI = M - I + 1 >*/
            mi = *m - i__ + 1;
/*<             IC = I >*/
            ic = i__;
/*<          ELSE >*/
        } else {

/*           H(i) is applied to C(1:m,i:n) */

/*<             NI = N - I + 1 >*/
            ni = *n - i__ + 1;
/*<             JC = I >*/
            jc = i__;
/*<          END IF >*/
        }

/*        Apply H(i) */

/*<          AII = A( I, I ) >*/
        aii = a[i__ + i__ * a_dim1];
/*<          A( I, I ) = ONE >*/
        a[i__ + i__ * a_dim1] = (float)1.;
/*<    >*/
        slarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], &c__1, &tau[i__], &c__[
                ic + jc * c_dim1], ldc, &work[1], (ftnlen)1);
/*<          A( I, I ) = AII >*/
        a[i__ + i__ * a_dim1] = aii;
/*<    10 CONTINUE >*/
/* L10: */
    }
/*<       RETURN >*/
    return 0;

/*     End of SORM2R */

/*<       END >*/
} /* sorm2r_ */

#ifdef __cplusplus
        }
#endif