1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
/* lapack/util/ieeeck.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< INTEGER FUNCTION IEEECK( ISPEC, ZERO, ONE ) >*/
integer ieeeck_(integer *ispec, real *zero, real *one)
{
/* System generated locals */
integer ret_val;
/* Local variables */
real nan1, nan2, nan3, nan4, nan5, nan6, neginf, posinf, negzro, newzro;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1998 */
/* .. Scalar Arguments .. */
/*< INTEGER ISPEC >*/
/*< REAL ONE, ZERO >*/
/* .. */
/* Purpose */
/* ======= */
/* IEEECK is called from the ILAENV to verify that Infinity and */
/* possibly NaN arithmetic is safe (i.e. will not trap). */
/* Arguments */
/* ========= */
/* ISPEC (input) INTEGER */
/* Specifies whether to test just for inifinity arithmetic */
/* or whether to test for infinity and NaN arithmetic. */
/* = 0: Verify infinity arithmetic only. */
/* = 1: Verify infinity and NaN arithmetic. */
/* ZERO (input) REAL */
/* Must contain the value 0.0 */
/* This is passed to prevent the compiler from optimizing */
/* away this code. */
/* ONE (input) REAL */
/* Must contain the value 1.0 */
/* This is passed to prevent the compiler from optimizing */
/* away this code. */
/* RETURN VALUE: INTEGER */
/* = 0: Arithmetic failed to produce the correct answers */
/* = 1: Arithmetic produced the correct answers */
/* .. Local Scalars .. */
/*< >*/
/* .. */
/* .. Executable Statements .. */
/*< IEEECK = 1 >*/
ret_val = 1;
/*< POSINF = ONE / ZERO >*/
posinf = *one / *zero;
/*< IF( POSINF.LE.ONE ) THEN >*/
if (posinf <= *one) {
/*< IEEECK = 0 >*/
ret_val = 0;
/*< RETURN >*/
return ret_val;
/*< END IF >*/
}
/*< NEGINF = -ONE / ZERO >*/
neginf = -(*one) / *zero;
/*< IF( NEGINF.GE.ZERO ) THEN >*/
if (neginf >= *zero) {
/*< IEEECK = 0 >*/
ret_val = 0;
/*< RETURN >*/
return ret_val;
/*< END IF >*/
}
/*< NEGZRO = ONE / ( NEGINF+ONE ) >*/
negzro = *one / (neginf + *one);
/*< IF( NEGZRO.NE.ZERO ) THEN >*/
if (negzro != *zero) {
/*< IEEECK = 0 >*/
ret_val = 0;
/*< RETURN >*/
return ret_val;
/*< END IF >*/
}
/*< NEGINF = ONE / NEGZRO >*/
neginf = *one / negzro;
/*< IF( NEGINF.GE.ZERO ) THEN >*/
if (neginf >= *zero) {
/*< IEEECK = 0 >*/
ret_val = 0;
/*< RETURN >*/
return ret_val;
/*< END IF >*/
}
/*< NEWZRO = NEGZRO + ZERO >*/
newzro = negzro + *zero;
/*< IF( NEWZRO.NE.ZERO ) THEN >*/
if (newzro != *zero) {
/*< IEEECK = 0 >*/
ret_val = 0;
/*< RETURN >*/
return ret_val;
/*< END IF >*/
}
/*< POSINF = ONE / NEWZRO >*/
posinf = *one / newzro;
/*< IF( POSINF.LE.ONE ) THEN >*/
if (posinf <= *one) {
/*< IEEECK = 0 >*/
ret_val = 0;
/*< RETURN >*/
return ret_val;
/*< END IF >*/
}
/*< NEGINF = NEGINF*POSINF >*/
neginf *= posinf;
/*< IF( NEGINF.GE.ZERO ) THEN >*/
if (neginf >= *zero) {
/*< IEEECK = 0 >*/
ret_val = 0;
/*< RETURN >*/
return ret_val;
/*< END IF >*/
}
/*< POSINF = POSINF*POSINF >*/
posinf *= posinf;
/*< IF( POSINF.LE.ONE ) THEN >*/
if (posinf <= *one) {
/*< IEEECK = 0 >*/
ret_val = 0;
/*< RETURN >*/
return ret_val;
/*< END IF >*/
}
/* Return if we were only asked to check infinity arithmetic */
/*< >*/
if (*ispec == 0) {
return ret_val;
}
/*< NAN1 = POSINF + NEGINF >*/
nan1 = posinf + neginf;
/*< NAN2 = POSINF / NEGINF >*/
nan2 = posinf / neginf;
/*< NAN3 = POSINF / POSINF >*/
nan3 = posinf / posinf;
/*< NAN4 = POSINF*ZERO >*/
nan4 = posinf * *zero;
/*< NAN5 = NEGINF*NEGZRO >*/
nan5 = neginf * negzro;
/*< NAN6 = NAN5*0.0 >*/
nan6 = nan5 * (float)0.;
/*< IF( NAN1.EQ.NAN1 ) THEN >*/
if (nan1 == nan1) {
/*< IEEECK = 0 >*/
ret_val = 0;
/*< RETURN >*/
return ret_val;
/*< END IF >*/
}
/*< IF( NAN2.EQ.NAN2 ) THEN >*/
if (nan2 == nan2) {
/*< IEEECK = 0 >*/
ret_val = 0;
/*< RETURN >*/
return ret_val;
/*< END IF >*/
}
/*< IF( NAN3.EQ.NAN3 ) THEN >*/
if (nan3 == nan3) {
/*< IEEECK = 0 >*/
ret_val = 0;
/*< RETURN >*/
return ret_val;
/*< END IF >*/
}
/*< IF( NAN4.EQ.NAN4 ) THEN >*/
if (nan4 == nan4) {
/*< IEEECK = 0 >*/
ret_val = 0;
/*< RETURN >*/
return ret_val;
/*< END IF >*/
}
/*< IF( NAN5.EQ.NAN5 ) THEN >*/
if (nan5 == nan5) {
/*< IEEECK = 0 >*/
ret_val = 0;
/*< RETURN >*/
return ret_val;
/*< END IF >*/
}
/*< IF( NAN6.EQ.NAN6 ) THEN >*/
if (nan6 == nan6) {
/*< IEEECK = 0 >*/
ret_val = 0;
/*< RETURN >*/
return ret_val;
/*< END IF >*/
}
/*< RETURN >*/
return ret_val;
/*< END >*/
} /* ieeeck_ */
#ifdef __cplusplus
}
#endif
|