1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
/* laso/dlabcm.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
/* *********************************************************************** */
/*< >*/
/* Subroutine */ int dlabcm_(integer *n, integer *nband, integer *nl, integer
*nr, doublereal *a, doublereal *eigval, integer *lde, doublereal *
eigvec, doublereal *atol, doublereal *artol, doublereal *bound,
doublereal *atemp, doublereal *d__, doublereal *vtemp)
{
/* System generated locals */
integer a_dim1, a_offset, eigvec_dim1, eigvec_offset, i__1, i__2, i__3;
doublereal d__1, d__2;
/* Local variables */
integer i__, j, l, m;
doublereal rq, gap;
logical flag__;
doublereal errb;
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
integer *);
integer nval, numl;
extern doublereal dnrm2_(integer *, doublereal *, integer *);
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
doublereal sigma, resid;
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *), daxpy_(integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *);
doublereal vnorm;
extern /* Subroutine */ int dlabfc_(integer *, integer *, doublereal *,
doublereal *, integer *, integer *, doublereal *, integer *,
integer *, doublereal *, doublereal *, doublereal *), dlabax_(
integer *, integer *, doublereal *, doublereal *, doublereal *),
dlaran_(integer *, doublereal *);
integer numvec;
/* THIS SUBROUTINE ORGANIZES THE CALCULATION OF THE EIGENVALUES */
/* FOR THE BNDEIG PACKAGE. EIGENVALUES ARE COMPUTED BY */
/* A MODIFIED RAYLEIGH QUOTIENT ITERATION. THE EIGENVALUE COUNT */
/* OBTAINED BY EACH FACTORIZATION IS USED TO OCCASIONALLY OVERRIDE */
/* THE COMPUTED RAYLEIGH QUOTIENT WITH A DIFFERENT SHIFT TO */
/* INSURE CONVERGENCE TO THE DESIRED EIGENVALUES. */
/* FORMAL PARAMETERS. */
/*< INTEGER N, NBAND, NL, NR, LDE >*/
/*< >*/
/* LOCAL VARIABLES */
/*< LOGICAL FLAG >*/
/*< INTEGER I, J, L, M, NUML, NUMVEC, NVAL >*/
/*< DOUBLE PRECISION ERRB, GAP, RESID, RQ, SIGMA, VNORM >*/
/* FUNCTIONS CALLED */
/*< INTEGER MIN0 >*/
/*< DOUBLE PRECISION DMAX1, DMIN1, DDOT, DNRM2 >*/
/* SUBROUTINES CALLED */
/* DLABAX, DLABFC, DLARAN, DAXPY, DCOPY, DSCAL */
/* REPLACE ZERO VECTORS BY RANDOM */
/*< NVAL = NR - NL + 1 >*/
/* Parameter adjustments */
a_dim1 = *nband;
a_offset = 1 + a_dim1;
a -= a_offset;
--eigval;
eigvec_dim1 = *lde;
eigvec_offset = 1 + eigvec_dim1;
eigvec -= eigvec_offset;
bound -= 3;
--atemp;
--d__;
--vtemp;
/* Function Body */
nval = *nr - *nl + 1;
/*< FLAG = .FALSE. >*/
flag__ = FALSE_;
/*< DO 5 I = 1, NVAL >*/
i__1 = nval;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< >*/
if (ddot_(n, &eigvec[i__ * eigvec_dim1 + 1], &c__1, &eigvec[i__ *
eigvec_dim1 + 1], &c__1) == 0.) {
dlaran_(n, &eigvec[i__ * eigvec_dim1 + 1]);
}
/*< 5 CONTINUE >*/
/* L5: */
}
/* LOOP OVER EIGENVALUES */
/*< SIGMA = BOUND(2,NVAL+1) >*/
sigma = bound[((nval + 1) << 1) + 2];
/*< DO 400 J = 1, NVAL >*/
i__1 = nval;
for (j = 1; j <= i__1; ++j) {
/*< NUML = J >*/
numl = j;
/* PREPARE TO COMPUTE FIRST RAYLEIGH QUOTIENT */
/*< 10 CALL DLABAX(N, NBAND, A, EIGVEC(1,J), VTEMP) >*/
L10:
dlabax_(n, nband, &a[a_offset], &eigvec[j * eigvec_dim1 + 1], &vtemp[
1]);
/*< VNORM = DNRM2(N, VTEMP, 1) >*/
vnorm = dnrm2_(n, &vtemp[1], &c__1);
/*< IF(VNORM .EQ. 0.0D0) GO TO 20 >*/
if (vnorm == 0.) {
goto L20;
}
/*< CALL DSCAL(N, 1.0D0/VNORM, VTEMP, 1) >*/
d__1 = 1. / vnorm;
dscal_(n, &d__1, &vtemp[1], &c__1);
/*< CALL DSCAL(N, 1.0D0/VNORM, EIGVEC(1,J), 1) >*/
d__1 = 1. / vnorm;
dscal_(n, &d__1, &eigvec[j * eigvec_dim1 + 1], &c__1);
/*< CALL DAXPY(N, -SIGMA, EIGVEC(1,J), 1, VTEMP, 1) >*/
d__1 = -sigma;
daxpy_(n, &d__1, &eigvec[j * eigvec_dim1 + 1], &c__1, &vtemp[1], &
c__1);
/* LOOP OVER SHIFTS */
/* COMPUTE RAYLEIGH QUOTIENT, RESIDUAL NORM, AND CURRENT TOLERANCE */
/*< 20 VNORM = DNRM2(N, EIGVEC(1,J), 1) >*/
L20:
vnorm = dnrm2_(n, &eigvec[j * eigvec_dim1 + 1], &c__1);
/*< IF(VNORM .NE. 0.0D0) GO TO 30 >*/
if (vnorm != 0.) {
goto L30;
}
/*< CALL DLARAN(N, EIGVEC(1,J)) >*/
dlaran_(n, &eigvec[j * eigvec_dim1 + 1]);
/*< GO TO 10 >*/
goto L10;
/*< >*/
L30:
rq = sigma + ddot_(n, &eigvec[j * eigvec_dim1 + 1], &c__1, &vtemp[1],
&c__1) / vnorm / vnorm;
/*< CALL DAXPY(N, SIGMA-RQ, EIGVEC(1,J), 1, VTEMP, 1) >*/
d__1 = sigma - rq;
daxpy_(n, &d__1, &eigvec[j * eigvec_dim1 + 1], &c__1, &vtemp[1], &
c__1);
/*< RESID = DMAX1(ATOL, DNRM2(N, VTEMP, 1)/VNORM) >*/
/* Computing MAX */
d__1 = *atol, d__2 = dnrm2_(n, &vtemp[1], &c__1) / vnorm;
resid = max(d__1,d__2);
/*< CALL DSCAL(N, 1.0/VNORM, EIGVEC(1,J), 1) >*/
d__1 = (float)1. / vnorm;
dscal_(n, &d__1, &eigvec[j * eigvec_dim1 + 1], &c__1);
/* ACCEPT EIGENVALUE IF THE INTERVAL IS SMALL ENOUGH */
/*< IF(BOUND(2,J+1) - BOUND(1,J+1) .LT. 3.0D0*ATOL) GO TO 300 >*/
if (bound[((j + 1) << 1) + 2] - bound[((j + 1) << 1) + 1] < *atol * 3.) {
goto L300;
}
/* COMPUTE MINIMAL ERROR BOUND */
/*< ERRB = RESID >*/
errb = resid;
/*< GAP = DMIN1(BOUND(1,J+2) - RQ, RQ - BOUND(2,J)) >*/
/* Computing MIN */
d__1 = bound[((j + 2) << 1) + 1] - rq, d__2 = rq - bound[(j << 1) + 2];
gap = min(d__1,d__2);
/*< IF(GAP .GT. RESID) ERRB = DMAX1(ATOL, RESID*RESID/GAP) >*/
if (gap > resid) {
/* Computing MAX */
d__1 = *atol, d__2 = resid * resid / gap;
errb = max(d__1,d__2);
}
/* TENTATIVE NEW SHIFT */
/*< SIGMA = 0.5D0*(BOUND(1,J+1) + BOUND(2,J+1)) >*/
sigma = (bound[((j + 1) << 1) + 1] + bound[((j + 1) << 1) + 2]) * .5;
/* CHECK FOR TERMINALTION */
/*< IF(RESID .GT. 2.0D0*ATOL) GO TO 40 >*/
if (resid > *atol * 2.) {
goto L40;
}
/*< >*/
if (rq - errb > bound[(j << 1) + 2] && rq + errb < bound[((j + 2) << 1)
+ 1]) {
goto L310;
}
/* RQ IS TO THE LEFT OF THE INTERVAL */
/*< 40 IF(RQ .GE. BOUND(1,J+1)) GO TO 50 >*/
L40:
if (rq >= bound[((j + 1) << 1) + 1]) {
goto L50;
}
/*< IF(RQ - ERRB .GT. BOUND(2,J)) GO TO 100 >*/
if (rq - errb > bound[(j << 1) + 2]) {
goto L100;
}
/*< IF(RQ + ERRB .LT. BOUND(1,J+1)) CALL DLARAN(N,EIGVEC(1,J)) >*/
if (rq + errb < bound[((j + 1) << 1) + 1]) {
dlaran_(n, &eigvec[j * eigvec_dim1 + 1]);
}
/*< GO TO 200 >*/
goto L200;
/* RQ IS TO THE RIGHT OF THE INTERVAL */
/*< 50 IF(RQ .LE. BOUND(2,J+1)) GO TO 100 >*/
L50:
if (rq <= bound[((j + 1) << 1) + 2]) {
goto L100;
}
/*< IF(RQ + ERRB .LT. BOUND(1,J+2)) GO TO 100 >*/
if (rq + errb < bound[((j + 2) << 1) + 1]) {
goto L100;
}
/* SAVE THE REJECTED VECTOR IF INDICATED */
/*< IF(RQ - ERRB .LE. BOUND(2,J+1)) GO TO 200 >*/
if (rq - errb <= bound[((j + 1) << 1) + 2]) {
goto L200;
}
/*< DO 60 I = J, NVAL >*/
i__2 = nval;
for (i__ = j; i__ <= i__2; ++i__) {
/*< IF(BOUND(2,I+1) .GT. RQ) GO TO 70 >*/
if (bound[((i__ + 1) << 1) + 2] > rq) {
goto L70;
}
/*< 60 CONTINUE >*/
/* L60: */
}
/*< GO TO 80 >*/
goto L80;
/*< 70 CALL DCOPY(N, EIGVEC(1,J), 1, EIGVEC(1,I), 1) >*/
L70:
dcopy_(n, &eigvec[j * eigvec_dim1 + 1], &c__1, &eigvec[i__ *
eigvec_dim1 + 1], &c__1);
/*< 80 CALL DLARAN(N, EIGVEC(1,J)) >*/
L80:
dlaran_(n, &eigvec[j * eigvec_dim1 + 1]);
/*< GO TO 200 >*/
goto L200;
/* PERTURB RQ TOWARD THE MIDDLE */
/*< 100 IF(SIGMA .LT. RQ) SIGMA = DMAX1(SIGMA, RQ-ERRB) >*/
L100:
if (sigma < rq) {
/* Computing MAX */
d__1 = sigma, d__2 = rq - errb;
sigma = max(d__1,d__2);
}
/*< IF(SIGMA .GT. RQ) SIGMA = DMIN1(SIGMA, RQ+ERRB) >*/
if (sigma > rq) {
/* Computing MIN */
d__1 = sigma, d__2 = rq + errb;
sigma = min(d__1,d__2);
}
/* FACTOR AND SOLVE */
/*< 200 DO 210 I = J, NVAL >*/
L200:
i__2 = nval;
for (i__ = j; i__ <= i__2; ++i__) {
/*< IF(SIGMA .LT. BOUND(1,I+1)) GO TO 220 >*/
if (sigma < bound[((i__ + 1) << 1) + 1]) {
goto L220;
}
/*< 210 CONTINUE >*/
/* L210: */
}
/*< I = NVAL + 1 >*/
i__ = nval + 1;
/*< 220 NUMVEC = I - J >*/
L220:
numvec = i__ - j;
/*< NUMVEC = MIN0(NUMVEC, NBAND + 2) >*/
/* Computing MIN */
i__2 = numvec, i__3 = *nband + 2;
numvec = min(i__2,i__3);
/*< IF(RESID .LT. ARTOL) NUMVEC = MIN0(1,NUMVEC) >*/
if (resid < *artol) {
numvec = min(1,numvec);
}
/*< CALL DCOPY(N, EIGVEC(1,J), 1, VTEMP, 1) >*/
dcopy_(n, &eigvec[j * eigvec_dim1 + 1], &c__1, &vtemp[1], &c__1);
/*< >*/
i__2 = (*nband << 1) - 1;
dlabfc_(n, nband, &a[a_offset], &sigma, &numvec, lde, &eigvec[j *
eigvec_dim1 + 1], &numl, &i__2, &atemp[1], &d__[1], atol);
/* PARTIALLY SCALE EXTRA VECTORS TO PREVENT UNDERFLOW OR OVERFLOW */
/*< IF(NUMVEC .EQ. 1) GO TO 227 >*/
if (numvec == 1) {
goto L227;
}
/*< L = NUMVEC - 1 >*/
l = numvec - 1;
/*< DO 225 I = 1,L >*/
i__2 = l;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< M = J + I >*/
m = j + i__;
/*< CALL DSCAL(N, 1.0D0/VNORM, EIGVEC(1,M), 1) >*/
d__1 = 1. / vnorm;
dscal_(n, &d__1, &eigvec[m * eigvec_dim1 + 1], &c__1);
/*< 225 CONTINUE >*/
/* L225: */
}
/* UPDATE INTERVALS */
/*< 227 NUML = NUML - NL + 1 >*/
L227:
numl = numl - *nl + 1;
/*< IF(NUML .GE. 0) BOUND(2,1) = DMIN1(BOUND(2,1), SIGMA) >*/
if (numl >= 0) {
bound[4] = min(bound[4],sigma);
}
/*< DO 230 I = J, NVAL >*/
i__2 = nval;
for (i__ = j; i__ <= i__2; ++i__) {
/*< IF(SIGMA .LT. BOUND(1,I+1)) GO TO 20 >*/
if (sigma < bound[((i__ + 1) << 1) + 1]) {
goto L20;
}
/*< IF(NUML .LT. I) BOUND(1,I+1) = SIGMA >*/
if (numl < i__) {
bound[((i__ + 1) << 1) + 1] = sigma;
}
/*< IF(NUML .GE. I) BOUND(2,I+1) = SIGMA >*/
if (numl >= i__) {
bound[((i__ + 1) << 1) + 2] = sigma;
}
/*< 230 CONTINUE >*/
/* L230: */
}
/*< >*/
if (numl < nval + 1) {
/* Computing MAX */
d__1 = sigma, d__2 = bound[((nval + 2) << 1) + 1];
bound[((nval + 2) << 1) + 1] = max(d__1,d__2);
}
/*< GO TO 20 >*/
goto L20;
/* ACCEPT AN EIGENPAIR */
/*< 300 CALL DLARAN(N, EIGVEC(1,J)) >*/
L300:
dlaran_(n, &eigvec[j * eigvec_dim1 + 1]);
/*< FLAG = .TRUE. >*/
flag__ = TRUE_;
/*< GO TO 310 >*/
goto L310;
/*< 305 FLAG = .FALSE. >*/
L305:
flag__ = FALSE_;
/*< RQ = 0.5D0*(BOUND(1,J+1) + BOUND(2,J+1)) >*/
rq = (bound[((j + 1) << 1) + 1] + bound[((j + 1) << 1) + 2]) * .5;
/*< >*/
i__2 = (*nband << 1) - 1;
dlabfc_(n, nband, &a[a_offset], &rq, &numvec, lde, &eigvec[j *
eigvec_dim1 + 1], &numl, &i__2, &atemp[1], &d__[1], atol);
/*< VNORM = DNRM2(N, EIGVEC(1,J), 1) >*/
vnorm = dnrm2_(n, &eigvec[j * eigvec_dim1 + 1], &c__1);
/*< IF(VNORM .NE. 0.0) CALL DSCAL(N, 1.0D0/VNORM, EIGVEC(1,J), 1) >*/
if (vnorm != (float)0.) {
d__1 = 1. / vnorm;
dscal_(n, &d__1, &eigvec[j * eigvec_dim1 + 1], &c__1);
}
/* ORTHOGONALIZE THE NEW EIGENVECTOR AGAINST THE OLD ONES */
/*< 310 EIGVAL(J) = RQ >*/
L310:
eigval[j] = rq;
/*< IF(J .EQ. 1) GO TO 330 >*/
if (j == 1) {
goto L330;
}
/*< M = J - 1 >*/
m = j - 1;
/*< DO 320 I = 1, M >*/
i__2 = m;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< >*/
d__1 = -ddot_(n, &eigvec[i__ * eigvec_dim1 + 1], &c__1, &eigvec[j
* eigvec_dim1 + 1], &c__1);
daxpy_(n, &d__1, &eigvec[i__ * eigvec_dim1 + 1], &c__1, &eigvec[j
* eigvec_dim1 + 1], &c__1);
/*< 320 CONTINUE >*/
/* L320: */
}
/*< 330 VNORM = DNRM2(N, EIGVEC(1,J), 1) >*/
L330:
vnorm = dnrm2_(n, &eigvec[j * eigvec_dim1 + 1], &c__1);
/*< IF(VNORM .EQ. 0.0D0) GO TO 305 >*/
if (vnorm == 0.) {
goto L305;
}
/*< CALL DSCAL(N, 1.0D0/VNORM, EIGVEC(1,J), 1) >*/
d__1 = 1. / vnorm;
dscal_(n, &d__1, &eigvec[j * eigvec_dim1 + 1], &c__1);
/* ORTHOGONALIZE LATER VECTORS AGAINST THE CONVERGED ONE */
/*< IF(FLAG) GO TO 305 >*/
if (flag__) {
goto L305;
}
/*< IF(J .EQ. NVAL) RETURN >*/
if (j == nval) {
return 0;
}
/*< M = J + 1 >*/
m = j + 1;
/*< DO 340 I = M, NVAL >*/
i__2 = nval;
for (i__ = m; i__ <= i__2; ++i__) {
/*< >*/
d__1 = -ddot_(n, &eigvec[j * eigvec_dim1 + 1], &c__1, &eigvec[i__
* eigvec_dim1 + 1], &c__1);
daxpy_(n, &d__1, &eigvec[j * eigvec_dim1 + 1], &c__1, &eigvec[i__
* eigvec_dim1 + 1], &c__1);
/*< 340 CONTINUE >*/
/* L340: */
}
/*< 400 CONTINUE >*/
/* L400: */
}
/*< RETURN >*/
return 0;
/*< 500 CONTINUE >*/
/* L500: */
/*< END >*/
return 0;
} /* dlabcm_ */
#ifdef __cplusplus
}
#endif
|