1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
C
C***********************************************************************
C
SUBROUTINE DLABCM(N, NBAND, NL, NR, A, EIGVAL,
1 LDE, EIGVEC, ATOL, ARTOL, BOUND, ATEMP, D, VTEMP)
C
C THIS SUBROUTINE ORGANIZES THE CALCULATION OF THE EIGENVALUES
C FOR THE BNDEIG PACKAGE. EIGENVALUES ARE COMPUTED BY
C A MODIFIED RAYLEIGH QUOTIENT ITERATION. THE EIGENVALUE COUNT
C OBTAINED BY EACH FACTORIZATION IS USED TO OCCASIONALLY OVERRIDE
C THE COMPUTED RAYLEIGH QUOTIENT WITH A DIFFERENT SHIFT TO
C INSURE CONVERGENCE TO THE DESIRED EIGENVALUES.
C
C FORMAL PARAMETERS.
C
INTEGER N, NBAND, NL, NR, LDE
DOUBLE PRECISION A(NBAND,1), EIGVAL(1),
1 EIGVEC(LDE,1), ATOL, ARTOL, BOUND(2,1), ATEMP(1),
2 D(1), VTEMP(1)
C
C
C LOCAL VARIABLES
C
LOGICAL FLAG
INTEGER I, J, L, M, NUML, NUMVEC, NVAL
DOUBLE PRECISION ERRB, GAP, RESID, RQ, SIGMA, VNORM
C
C
C FUNCTIONS CALLED
C
INTEGER MIN0
DOUBLE PRECISION DMAX1, DMIN1, DDOT, DNRM2
C
C SUBROUTINES CALLED
C
C DLABAX, DLABFC, DLARAN, DAXPY, DCOPY, DSCAL
C
C REPLACE ZERO VECTORS BY RANDOM
C
NVAL = NR - NL + 1
FLAG = .FALSE.
DO 5 I = 1, NVAL
IF(DDOT(N, EIGVEC(1,I), 1, EIGVEC(1,I), 1) .EQ. 0.0D0)
1 CALL DLARAN(N,EIGVEC(1,I))
5 CONTINUE
C
C LOOP OVER EIGENVALUES
C
SIGMA = BOUND(2,NVAL+1)
DO 400 J = 1, NVAL
NUML = J
C
C PREPARE TO COMPUTE FIRST RAYLEIGH QUOTIENT
C
10 CALL DLABAX(N, NBAND, A, EIGVEC(1,J), VTEMP)
VNORM = DNRM2(N, VTEMP, 1)
IF(VNORM .EQ. 0.0D0) GO TO 20
CALL DSCAL(N, 1.0D0/VNORM, VTEMP, 1)
CALL DSCAL(N, 1.0D0/VNORM, EIGVEC(1,J), 1)
CALL DAXPY(N, -SIGMA, EIGVEC(1,J), 1, VTEMP, 1)
C
C LOOP OVER SHIFTS
C
C COMPUTE RAYLEIGH QUOTIENT, RESIDUAL NORM, AND CURRENT TOLERANCE
C
20 VNORM = DNRM2(N, EIGVEC(1,J), 1)
IF(VNORM .NE. 0.0D0) GO TO 30
CALL DLARAN(N, EIGVEC(1,J))
GO TO 10
C
30 RQ = SIGMA + DDOT(N, EIGVEC(1,J), 1, VTEMP, 1)
1 /VNORM/VNORM
CALL DAXPY(N, SIGMA-RQ, EIGVEC(1,J), 1, VTEMP, 1)
RESID = DMAX1(ATOL, DNRM2(N, VTEMP, 1)/VNORM)
CALL DSCAL(N, 1.0/VNORM, EIGVEC(1,J), 1)
C
C ACCEPT EIGENVALUE IF THE INTERVAL IS SMALL ENOUGH
C
IF(BOUND(2,J+1) - BOUND(1,J+1) .LT. 3.0D0*ATOL) GO TO 300
C
C COMPUTE MINIMAL ERROR BOUND
C
ERRB = RESID
GAP = DMIN1(BOUND(1,J+2) - RQ, RQ - BOUND(2,J))
IF(GAP .GT. RESID) ERRB = DMAX1(ATOL, RESID*RESID/GAP)
C
C TENTATIVE NEW SHIFT
C
SIGMA = 0.5D0*(BOUND(1,J+1) + BOUND(2,J+1))
C
C CHECK FOR TERMINALTION
C
IF(RESID .GT. 2.0D0*ATOL) GO TO 40
IF(RQ - ERRB .GT. BOUND(2,J) .AND.
1 RQ + ERRB .LT. BOUND(1,J+2)) GO TO 310
C
C RQ IS TO THE LEFT OF THE INTERVAL
C
40 IF(RQ .GE. BOUND(1,J+1)) GO TO 50
IF(RQ - ERRB .GT. BOUND(2,J)) GO TO 100
IF(RQ + ERRB .LT. BOUND(1,J+1)) CALL DLARAN(N,EIGVEC(1,J))
GO TO 200
C
C RQ IS TO THE RIGHT OF THE INTERVAL
C
50 IF(RQ .LE. BOUND(2,J+1)) GO TO 100
IF(RQ + ERRB .LT. BOUND(1,J+2)) GO TO 100
C
C SAVE THE REJECTED VECTOR IF INDICATED
C
IF(RQ - ERRB .LE. BOUND(2,J+1)) GO TO 200
DO 60 I = J, NVAL
IF(BOUND(2,I+1) .GT. RQ) GO TO 70
60 CONTINUE
GO TO 80
C
70 CALL DCOPY(N, EIGVEC(1,J), 1, EIGVEC(1,I), 1)
C
80 CALL DLARAN(N, EIGVEC(1,J))
GO TO 200
C
C PERTURB RQ TOWARD THE MIDDLE
C
100 IF(SIGMA .LT. RQ) SIGMA = DMAX1(SIGMA, RQ-ERRB)
IF(SIGMA .GT. RQ) SIGMA = DMIN1(SIGMA, RQ+ERRB)
C
C FACTOR AND SOLVE
C
200 DO 210 I = J, NVAL
IF(SIGMA .LT. BOUND(1,I+1)) GO TO 220
210 CONTINUE
I = NVAL + 1
220 NUMVEC = I - J
NUMVEC = MIN0(NUMVEC, NBAND + 2)
IF(RESID .LT. ARTOL) NUMVEC = MIN0(1,NUMVEC)
CALL DCOPY(N, EIGVEC(1,J), 1, VTEMP, 1)
CALL DLABFC(N, NBAND, A, SIGMA, NUMVEC, LDE,
1 EIGVEC(1,J), NUML, 2*NBAND-1, ATEMP, D, ATOL)
C
C PARTIALLY SCALE EXTRA VECTORS TO PREVENT UNDERFLOW OR OVERFLOW
C
IF(NUMVEC .EQ. 1) GO TO 227
L = NUMVEC - 1
DO 225 I = 1,L
M = J + I
CALL DSCAL(N, 1.0D0/VNORM, EIGVEC(1,M), 1)
225 CONTINUE
C
C UPDATE INTERVALS
C
227 NUML = NUML - NL + 1
IF(NUML .GE. 0) BOUND(2,1) = DMIN1(BOUND(2,1), SIGMA)
DO 230 I = J, NVAL
IF(SIGMA .LT. BOUND(1,I+1)) GO TO 20
IF(NUML .LT. I) BOUND(1,I+1) = SIGMA
IF(NUML .GE. I) BOUND(2,I+1) = SIGMA
230 CONTINUE
IF(NUML .LT. NVAL + 1) BOUND(1,NVAL+2) = DMAX1(SIGMA,
1 BOUND(1,NVAL+2))
GO TO 20
C
C ACCEPT AN EIGENPAIR
C
300 CALL DLARAN(N, EIGVEC(1,J))
FLAG = .TRUE.
GO TO 310
C
305 FLAG = .FALSE.
RQ = 0.5D0*(BOUND(1,J+1) + BOUND(2,J+1))
CALL DLABFC(N, NBAND, A, RQ, NUMVEC, LDE,
1 EIGVEC(1,J), NUML, 2*NBAND-1, ATEMP, D, ATOL)
VNORM = DNRM2(N, EIGVEC(1,J), 1)
IF(VNORM .NE. 0.0) CALL DSCAL(N, 1.0D0/VNORM, EIGVEC(1,J), 1)
C
C ORTHOGONALIZE THE NEW EIGENVECTOR AGAINST THE OLD ONES
C
310 EIGVAL(J) = RQ
IF(J .EQ. 1) GO TO 330
M = J - 1
DO 320 I = 1, M
CALL DAXPY(N, -DDOT(N,EIGVEC(1,I),1,EIGVEC(1,J),1),
1 EIGVEC(1,I), 1, EIGVEC(1,J), 1)
320 CONTINUE
330 VNORM = DNRM2(N, EIGVEC(1,J), 1)
IF(VNORM .EQ. 0.0D0) GO TO 305
CALL DSCAL(N, 1.0D0/VNORM, EIGVEC(1,J), 1)
C
C ORTHOGONALIZE LATER VECTORS AGAINST THE CONVERGED ONE
C
IF(FLAG) GO TO 305
IF(J .EQ. NVAL) RETURN
M = J + 1
DO 340 I = M, NVAL
CALL DAXPY(N, -DDOT(N,EIGVEC(1,J),1,EIGVEC(1,I),1),
1 EIGVEC(1,J), 1, EIGVEC(1,I), 1)
340 CONTINUE
400 CONTINUE
RETURN
C
500 CONTINUE
END
|