File: dnlaso.f

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (883 lines) | stat: -rw-r--r-- 27,019 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
C   VERSION 2    DOES NOT USE EISPACK
C
C ------------------------------------------------------------------
C
      SUBROUTINE DNLASO(OP, IOVECT, N, NVAL, NFIG, NPERM,
     *   NMVAL, VAL, NMVEC, VEC, NBLOCK, MAXOP, MAXJ, WORK,
     *   IND, IERR)
C
      INTEGER N, NVAL, NFIG, NPERM, NMVAL, NMVEC, NBLOCK,
     *   MAXOP, MAXJ, IND(1), IERR
      DOUBLE PRECISION VEC(NMVEC,1), VAL(NMVAL,4), WORK(1)
      EXTERNAL OP, IOVECT
C
C AUTHOR/IMPLEMENTER D.S.SCOTT-B.N.PARLETT/D.S.SCOTT
C
C COMPUTER SCIENCES DEPARTMENT
C UNIVERSITY OF TEXAS AT AUSTIN
C AUSTIN, TX 78712
C
C VERSION 2 ORIGINATED APRIL 1982
C
C CURRENT VERSION  JUNE 1983
C
C DNLASO FINDS A FEW EIGENVALUES AND EIGENVECTORS AT EITHER END OF
C THE SPECTRUM OF A LARGE SPARSE SYMMETRIC MATRIX.  THE SUBROUTINE
C DNLASO IS PRIMARILY A DRIVER FOR SUBROUTINE DNWLA WHICH IMPLEMENTS
C THE LANCZOS ALGORITHM WITH SELECTIVE ORTHOGONALIZATION AND
C SUBROUTINE DNPPLA WHICH POST PROCESSES THE OUTPUT OF DNWLA.
C HOWEVER DNLASO DOES CHECK FOR INCONSISTENCIES IN THE CALLING
C PARAMETERS AND DOES PREPROCESS ANY USER SUPPLIED EIGENPAIRS.
C DNLASO ALWAYS LOOKS FOR THE SMALLEST (LEFTMOST) EIGENVALUES.  IF
C THE LARGEST EIGENVALUES ARE DESIRED DNLASO IMPLICITLY USES THE
C NEGATIVE OF THE MATRIX.
C
C
C ON INPUT
C
C
C   OP   A USER SUPPLIED SUBROUTINE WITH CALLING SEQUENCE
C     OP(N,M,P,Q).  P AND Q ARE N X M MATRICES AND Q IS
C     RETURNED AS THE MATRIX TIMES P.
C
C   IOVECT   A USER SUPPLIED SUBROUTINE WITH CALLING SEQUENCE
C     IOVECT(N,M,Q,J,K).  Q IS AN N X M MATRIX.  IF K = 0
C     THE COLUMNS OF Q ARE STORED AS THE (J-M+1)TH THROUGH
C     THE JTH LANCZOS VECTORS.  IF K = 1 THEN Q IS RETURNED
C     AS THE (J-M+1)TH THROUGH THE JTH LANCZOS VECTORS.  SEE
C     DOCUMENTATION FOR FURTHER DETAILS AND EXAMPLES.
C
C   N   THE ORDER OF THE MATRIX.
C
C   NVAL   NVAL SPECIFIES THE EIGENVALUES TO BE FOUND.
C     DABS(NVAL)  IS THE NUMBER OF EIGENVALUES DESIRED.
C     IF NVAL < 0 THE ALGEBRAICALLY SMALLEST (LEFTMOST)
C     EIGENVALUES ARE FOUND.  IF NVAL > 0 THE ALGEBRAICALLY
C     LARGEST (RIGHTMOST) EIGENVALUES ARE FOUND.  NVAL MUST NOT
C     BE ZERO.  DABS(NVAL) MUST BE LESS THAN  MAXJ/2.
C
C   NFIG   THE NUMBER OF DECIMAL DIGITS OF ACCURACY DESIRED IN THE
C     EIGENVALUES.  NFIG MUST BE GREATER THAN OR EQUAL TO 1.
C
C   NPERM   AN INTEGER VARIABLE WHICH SPECIFIES THE NUMBER OF USER
C     SUPPLIED EIGENPAIRS.  IN MOST CASES NPERM WILL BE ZERO.  SEE
C     DOCUMENTAION FOR FURTHER DETAILS OF USING NPERM GREATER
C     THAN ZERO.  NPERM MUST NOT BE LESS THAN ZERO.
C
C   NMVAL   THE ROW DIMENSION OF THE ARRAY VAL.  NMVAL MUST BE GREATER
C     THAN OR EQUAL TO DABS(NVAL).
C
C   VAL   A TWO DIMENSIONAL DOUBLE PRECISION ARRAY OF ROW
C     DIMENSION NMVAL AND COLUMN DIMENSION AT LEAST 4.  IF NPERM
C     IS GREATER THAN ZERO THEN CERTAIN INFORMATION MUST BE STORED
C     IN VAL.  SEE DOCUMENTATION FOR DETAILS.
C
C   NMVEC   THE ROW DIMENSION OF THE ARRAY VEC.  NMVEC MUST BE GREATER
C     THAN OR EQUAL TO N.
C
C   VEC   A TWO DIMENSIONAL DOUBLE PRECISION ARRAY OF ROW
C     DIMENSION NMVEC AND COLUMN DIMENSION AT LEAST DABS(NVAL).  IF
C     NPERM > 0 THEN THE FIRST NPERM COLUMNS OF VEC MUST
C     CONTAIN THE USER SUPPLIED EIGENVECTORS.
C
C   NBLOCK   THE BLOCK SIZE.  SEE DOCUMENTATION FOR CHOOSING
C     AN APPROPRIATE VALUE FOR NBLOCK.  NBLOCK MUST BE GREATER
C     THAN ZERO AND LESS THAN  MAXJ/6.
C
C   MAXOP   AN UPPER BOUND ON THE NUMBER OF CALLS TO THE SUBROUTINE
C     OP.  DNLASO TERMINATES WHEN MAXOP IS EXCEEDED.  SEE
C     DOCUMENTATION FOR GUIDELINES IN CHOOSING A VALUE FOR MAXOP.
C
C   MAXJ   AN INDICATION OF THE AVAILABLE STORAGE (SEE WORK AND
C     DOCUMENTATION ON IOVECT).  FOR THE FASTEST CONVERGENCE MAXJ
C     SHOULD BE AS LARGE AS POSSIBLE, ALTHOUGH IT IS USELESS TO HAVE
C     MAXJ LARGER THAN MAXOP*NBLOCK.
C
C   WORK   A DOUBLE PRECISION ARRAY OF DIMENSION AT LEAST AS
C     LARGE AS
C
C         2*N*NBLOCK + MAXJ*(NBLOCK+NV+2) + 2*NBLOCK*NBLOCK + 3*NV
C
C            + THE MAXIMUM OF
C                 N*NBLOCK
C                   AND
C         MAXJ*(2*NBLOCK+3) + 2*NV + 6 + (2*NBLOCK+2)*(NBLOCK+1)
C
C     WHERE NV = DABS(NVAL)
C
C     THE FIRST N*NBLOCK ELEMENTS OF WORK MUST CONTAIN THE DESIRED
C     STARTING VECTORS.  SEE DOCUMENTATION FOR GUIDELINES IN
C     CHOOSING STARTING VECTORS.
C
C   IND   AN INTEGER ARRAY OF DIMENSION AT LEAST DABS(NVAL).
C
C   IERR   AN INTEGER VARIABLE.
C
C
C ON OUTPUT
C
C
C   NPERM   THE NUMBER OF EIGENPAIRS NOW KNOWN.
C
C   VEC   THE FIRST NPERM COLUMNS OF VEC CONTAIN THE EIGENVECTORS.
C
C   VAL   THE FIRST COLUMN OF VAL CONTAINS THE CORRESPONDING
C     EIGENVALUES.  THE SECOND COLUMN CONTAINS THE RESIDUAL NORMS OF
C     THE EIGENPAIRS WHICH ARE BOUNDS ON THE ACCURACY OF THE EIGEN-
C     VALUES.  THE THIRD COLUMN CONTAINS MORE DOUBLE PRECISIONISTIC ESTIMATES
C     OF THE ACCURACY OF THE EIGENVALUES.  THE FOURTH COLUMN CONTAINS
C     ESTIMATES OF THE ACCURACY OF THE EIGENVECTORS.  SEE
C     DOCUMENTATION FOR FURTHER INFORMATION ON THESE QUANTITIES.
C
C   WORK   IF WORK IS TERMINATED BEFORE COMPLETION (IERR = -2)
C     THE FIRST N*NBLOCK ELEMENTS OF WORK CONTAIN THE BEST VECTORS
C     FOR RESTARTING THE ALGORITHM AND DNLASO CAN BE IMMEDIATELY
C     RECALLED TO CONTINUE WORKING ON THE PROBLEM.
C
C   IND   IND(1)  CONTAINS THE ACTUAL NUMBER OF CALLS TO OP.  ON SOME
C     OCCASIONS THE NUMBER OF CALLS TO OP MAY BE SLIGHTLY LARGER
C     THAN MAXOP.
C
C   IERR   AN ERROR COMPLETION CODE.  THE NORMAL COMPLETION CODE IS
C     ZERO.  SEE THE DOCUMENTATION FOR INTERPRETATIONS OF NON-ZERO
C     COMPLETION CODES.
C
C
C INTERNAL VARIABLES.
C
C
      INTEGER I, I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11,
     *  I12, I13, M, NBAND, NOP, NV, IABS, MAX0
      LOGICAL RARITZ, SMALL
      DOUBLE PRECISION DELTA, EPS, TEMP, DNRM2, DABS, TARR(1)
      EXTERNAL DNPPLA, DNWLA, DORTQR, DCOPY, DNRM2, DVSORT
C
C NOP   RETURNED FROM DNWLA AS THE NUMBER OF CALLS TO THE
C   SUBROUTINE OP.
C
C NV   SET EQUAL TO DABS(NVAL), THE NUMBER OF EIGENVALUES DESIRED,
C   AND PASSED TO DNWLA.
C
C SMALL   SET TO .TRUE. IF THE SMALLEST EIGENVALUES ARE DESIRED.
C
C RARITZ   RETURNED FROM DNWLA AND PASSED TO DNPPLA.  RARITZ IS .TRUE.
C   IF A FINAL RAYLEIGH-RITZ PROCEDURE IS NEEDED.
C
C DELTA   RETURNED FROM DNWLA AS THE EIGENVALUE OF THE MATRIX
C   WHICH IS CLOSEST TO THE DESIRED EIGENVALUES.
C
C DNPPLA   A SUBROUTINE FOR POST-PROCESSING THE EIGENVECTORS COMPUTED
C   BY DNWLA.
C
C DNWLA   A SUBROUTINE FOR IMPLEMENTING THE LANCZOS ALGORITHM
C   WITH SELECTIVE ORTHOGONALIZATION.
C
C DMVPC   A SUBROUTINE FOR COMPUTING THE RESIDUAL NORM AND
C   ORTHOGONALITY COEFFICIENT OF GIVEN RITZ VECTORS.
C
C DORTQR   A SUBROUTINE FOR ORTHONORMALIZING A BLOCK OF VECTORS
C   USING HOUSEHOLDER REFLECTIONS.
C
C DAXPY,DCOPY,DDOT,DNRM2,DSCAL,DSWAP   A SUBSET OF THE BASIC LINEAR
C   ALGEBRA SUBPROGRAMS USED FOR VECTOR MANIPULATION.
C
C DLARAN   A SUBROUTINE TO GENERATE RANDOM VECTORS
C
C DLAEIG, DLAGER, DLABCM, DLABFC   SUBROUTINES FOR BAND EIGENVALUE
C   CALCULATIONS.
C
C ------------------------------------------------------------------
C
C THIS SECTION CHECKS FOR INCONSISTENCY IN THE INPUT PARAMETERS.
C
      NV = IABS(NVAL)
      IND(1) = 0
      IERR = 0
      IF (N.LT.6*NBLOCK) IERR = 1
      IF (NFIG.LE.0) IERR = IERR + 2
      IF (NMVEC.LT.N) IERR = IERR + 4
      IF (NPERM.LT.0) IERR = IERR + 8
      IF (MAXJ.LT.6*NBLOCK) IERR = IERR + 16
      IF (NV.LT.MAX0(1,NPERM)) IERR = IERR + 32
      IF (NV.GT.NMVAL) IERR = IERR + 64
      IF (NV.GT.MAXOP) IERR = IERR + 128
      IF (NV.GE.MAXJ/2) IERR = IERR + 256
      IF (NBLOCK.LT.1) IERR = IERR + 512
      IF (IERR.NE.0) RETURN
C
      SMALL = NVAL.LT.0
C
C ------------------------------------------------------------------
C
C THIS SECTION SORTS AND ORTHONORMALIZES THE USER SUPPLIED VECTORS.
C IF A USER SUPPLIED VECTOR IS ZERO OR IF DSIGNIFICANT CANCELLATION
C OCCURS IN THE ORTHOGONALIZATION PROCESS THEN IERR IS SET TO  -1
C AND DNLASO TERMINATES.
C
      IF (NPERM.EQ.0) GO TO 110
C
C THIS NEGATES THE USER SUPPLIED EIGENVALUES WHEN THE LARGEST
C EIGENVALUES ARE DESIRED, SINCE DNWLA WILL IMPLICITLY USE THE
C NEGATIVE OF THE MATRIX.
C
      IF (SMALL) GO TO 20
      DO 10 I=1,NPERM
         VAL(I,1) = -VAL(I,1)
   10 CONTINUE
C
C THIS SORTS THE USER SUPPLIED VALUES AND VECTORS.
C
   20 CALL DVSORT(NPERM, VAL, VAL(1,2), 0, TARR, NMVEC, N, VEC)
C
C THIS STORES THE NORMS OF THE VECTORS FOR LATER COMPARISON.
C IT ALSO INSURES THAT THE RESIDUAL NORMS ARE POSITIVE.
C
      DO 60 I=1,NPERM
         VAL(I,2) = DABS(VAL(I,2))
         VAL(I,3) = DNRM2(N,VEC(1,I),1)
   60 CONTINUE
C
C THIS PERFORMS THE ORTHONORMALIZATION.
C
      M = N*NBLOCK + 1
      CALL DORTQR(NMVEC, N, NPERM, VEC, WORK(M))
      M = N*NBLOCK - NPERM
      DO 70 I = 1, NPERM
         M = M + NPERM + 1
         IF(DABS(WORK(M)) .GT. 0.9*VAL(I,3)) GO TO 70
         IERR = -1
         RETURN
C
   70 CONTINUE
C
C THIS COPIES THE RESIDUAL NORMS INTO THE CORRECT LOCATIONS IN
C THE ARRAY WORK FOR LATER REFERENCE IN DNWLA.
C
      M = 2*N*NBLOCK + 1
      CALL DCOPY(NPERM, VAL(1,2), 1, WORK(M), 1)
C
C THIS SETS EPS TO AN APPROXIMATION OF THE RELATIVE MACHINE
C PRECISION
C
C ***THIS SHOULD BE REPLACED BY AN ASDSIGNMENT STATEMENT
C ***IN A PRODUCTION CODE
C
  110 EPS = 1.0D0
      DO 120 I = 1,1000
         EPS = 0.5D0*EPS
         TEMP = 1.0D0 + EPS
         IF(TEMP.EQ.1.0D0) GO TO 130
  120 CONTINUE
C
C ------------------------------------------------------------------
C
C THIS SECTION CALLS DNWLA WHICH IMPLEMENTS THE LANCZOS ALGORITHM
C WITH SELECTIVE ORTHOGONALIZATION.
C
  130 NBAND = NBLOCK + 1
      I1 = 1 + N*NBLOCK
      I2 = I1 + N*NBLOCK
      I3 = I2 + NV
      I4 = I3 + NV
      I5 = I4 + NV
      I6 = I5 + MAXJ*NBAND
      I7 = I6 + NBLOCK*NBLOCK
      I8 = I7 + NBLOCK*NBLOCK
      I9 = I8 + MAXJ*(NV+1)
      I10 = I9 + NBLOCK
      I11 = I10 + 2*NV + 6
      I12 = I11 + MAXJ*(2*NBLOCK+1)
      I13 = I12 + MAXJ
      CALL DNWLA(OP, IOVECT, N, NBAND, NV, NFIG, NPERM, VAL, NMVEC,
     *   VEC, NBLOCK, MAXOP, MAXJ, NOP, WORK(1), WORK(I1),
     *   WORK(I2), WORK(I3), WORK(I4), WORK(I5), WORK(I6),
     *   WORK(I7), WORK(I8), WORK(I9), WORK(I10), WORK(I11),
     *   WORK(I12), WORK(I13), IND, SMALL, RARITZ, DELTA, EPS, IERR)
C
C ------------------------------------------------------------------
C
C THIS SECTION CALLS DNPPLA (THE POST PROCESSOR).
C
      IF (NPERM.EQ.0) GO TO 140
      I1 = N*NBLOCK + 1
      I2 = I1 + NPERM*NPERM
      I3 = I2 + NPERM*NPERM
      I4 = I3 + MAX0(N*NBLOCK,2*NPERM*NPERM)
      I5 = I4 + N*NBLOCK
      I6 = I5 + 2*NPERM + 4
      CALL DNPPLA(OP, IOVECT, N, NPERM, NOP, NMVAL, VAL, NMVEC,
     *  VEC, NBLOCK, WORK(I1), WORK(I2), WORK(I3), WORK(I4),
     *  WORK(I5), WORK(I6), DELTA, SMALL, RARITZ, EPS)
C
  140 IND(1) = NOP
      RETURN
      END
C
C ------------------------------------------------------------------
C
      SUBROUTINE DNWLA(OP, IOVECT, N, NBAND, NVAL, NFIG, NPERM, VAL,
     *   NMVEC, VEC, NBLOCK, MAXOP, MAXJ, NOP, P1, P0,
     *   RES, TAU, OTAU, T, ALP, BET, S, P2, BOUND, ATEMP, VTEMP, D,
     *   IND, SMALL, RARITZ, DELTA, EPS, IERR)
C
      INTEGER N, NBAND, NVAL, NFIG, NPERM, NMVEC, NBLOCK, MAXOP, MAXJ,
     *   NOP, IND(1), IERR
      LOGICAL RARITZ, SMALL
      DOUBLE PRECISION VAL(1), VEC(NMVEC,1), P0(N,1), P1(N,1),
     *   P2(N,1), RES(1), TAU(1), OTAU(1), T(NBAND,1),
     *   ALP(NBLOCK,1), BET(NBLOCK,1), BOUND(1), ATEMP(1),
     *   VTEMP(1), D(1), S(MAXJ,1), DELTA, EPS
      EXTERNAL OP, IOVECT
C
C DNWLA IMPLEMENTS THE LANCZOS ALGORITHM WITH SELECTIVE
C ORTHOGONALIZATION.
C
C   NBAND  NBLOCK + 1  THE BAND WIDTH OF T.
C
C   NVAL   THE NUMBER OF DESIRED EIGENVALUES.
C
C   NPERM   THE NUMBER OF PERMANENT VECTORS (THOSE EIGENVECTORS
C     INPUT BY THE USER OR THOSE EIGENVECTORS SAVED WHEN THE
C     ALGORITHM IS ITERATED).  PERMANENT VECTORS ARE ORTHOGONAL
C     TO THE CURRENT KRYLOV SUBSPACE.
C
C   NOP   THE NUMBER OF CALLS TO OP.
C
C   P0, P1, AND P2   THE CURRENT BLOCKS OF LANCZOS VECTORS.
C
C   RES   THE (APPROXIMATE) RESIDUAL NORMS OF THE PERMANENT VECTORS.
C
C   TAU AND OTAU   USED TO MONITOR THE NEED FOR ORTHOGONALIZATION.
C
C   T   THE BAND MATRIX.
C
C   ALP   THE CURRENT DIAGONAL BLOCK.
C
C   BET   THE CURRENT OFF DIAGONAL BLOCK.
C
C   BOUND, ATEMP, VTEMP, D  TEMPORARY STORAGE USED BY THE BAND
C      EIGENVALUE SOLVER DLAEIG.
C
C   S   EIGENVECTORS OF T.
C
C   SMALL   .TRUE.  IF THE SMALL EIGENVALUES ARE DESIRED.
C
C   RARITZ  RETURNED AS  .TRUE.  IF A FINAL RAYLEIGH-RITZ PROCEDURE
C     IS TO BE DONE.
C
C   DELTA   RETURNED AS THE VALUE OF THE (NVAL+1)TH EIGENVALUE
C     OF THE MATRIX.  USED IN ESTIMATING THE ACCURACY OF THE
C     COMPUTED EIGENVALUES.
C
C
C INTERNAL VARIABLES USED  
C
      INTEGER I, I1, II, J, K, L, M, NG, NGOOD,
     *   NLEFT, NSTART, NTHETA, NUMBER, MIN0, MTEMP
      LOGICAL ENOUGH, TEST
      DOUBLE PRECISION ALPMAX, ALPMIN, ANORM, BETMAX, BETMIN,
     *   EPSRT, PNORM, RNORM, TEMP,
     *   TMAX, TMIN, TOLA, TOLG, UTOL, DABS,
     *   DMAX1, DMIN1, DSQRT, DDOT, DNRM2, TARR(1), DZERO(1)
      EXTERNAL DMVPC, DORTQR, DAXPY, DCOPY, DDOT,
     *   DNRM2, DSCAL, DLAEIG, DLAGER, DLARAN, DVSORT
C
C J   THE CURRENT DIMENSION OF T.  (THE DIMENSION OF THE CURRENT
C    KRYLOV SUBSPACE. 
C
C NGOOD   THE NUMBER OF GOOD RITZ VECTORS (GOOD VECTORS
C    LIE IN THE CURRENT KRYLOV SUBSPACE).
C
C NLEFT   THE NUMBER OF VALUES WHICH REMAIN TO BE DETERMINED,
C    I.E.  NLEFT = NVAL - NPERM.
C
C NUMBER = NPERM + NGOOD.
C
C ANORM   AN ESTIMATE OF THE NORM OF THE MATRIX.
C
C EPS   THE RELATIVE MACHINE PRECISION.
C
C UTOL   THE USER TOLERANCE.
C
C TARR  AN ARRAY OF LENGTH ONE USED TO INSURE TYPE CONSISTENCY IN CALLS TO
C       DLAEIG
C
C DZERO AN ARRAY OF LENGTH ONE CONTAINING DZERO, USED TO INSURE TYPE
C       CONSISTENCY IN CALLS TO DCOPY
C
      DZERO(1) = 0.0D0
      RNORM = 0.0D0
      IF (NPERM.NE.0) RNORM = DMAX1(-VAL(1),VAL(NPERM))
      PNORM = RNORM
      DELTA = 10.D30
      EPSRT = DSQRT(EPS)
      NLEFT = NVAL - NPERM
      NOP = 0
      NUMBER = NPERM
      RARITZ = .FALSE.
      UTOL = DMAX1(DBLE(FLOAT(N))*EPS,10.0D0**DBLE((-FLOAT(NFIG))))
      J = MAXJ
C
C ------------------------------------------------------------------
C
C ANY ITERATION OF THE ALGORITHM BEGINS HERE.
C
   30 DO 50 I=1,NBLOCK
         TEMP = DNRM2(N,P1(1,I),1)
         IF (TEMP.EQ.0D0) CALL DLARAN(N, P1(1,I))
   50 CONTINUE
      IF (NPERM.EQ.0) GO TO 70
      DO 60 I=1,NPERM
         TAU(I) = 1.0D0
         OTAU(I) = 0.0D0
   60 CONTINUE
   70 CALL DCOPY(N*NBLOCK, DZERO, 0, P0, 1)
      CALL DCOPY(NBLOCK*NBLOCK, DZERO, 0, BET, 1)
      CALL DCOPY(J*NBAND, DZERO, 0, T, 1)
      MTEMP = NVAL + 1
      DO 75 I = 1, MTEMP
         CALL DCOPY(J, DZERO, 0, S(1,I), 1)
   75 CONTINUE
      NGOOD = 0
      TMIN = 1.0D30
      TMAX = -1.0D30
      TEST = .TRUE.
      ENOUGH = .FALSE.
      BETMAX = 0.0D0
      J = 0
C
C ------------------------------------------------------------------
C
C THIS SECTION TAKES A SINGLE BLOCK LANCZOS STEP.
C
   80 J = J + NBLOCK
C
C THIS IS THE SELECTIVE ORTHOGONALIZATION.
C
      IF (NUMBER.EQ.0) GO TO 110
      DO 100 I=1,NUMBER
         IF (TAU(I).LT.EPSRT) GO TO 100
         TEST = .TRUE.
         TAU(I) = 0.0D0
         IF (OTAU(I).NE.0.0D0) OTAU(I) = 1.0D0
         DO 90 K=1,NBLOCK
            TEMP = -DDOT(N,VEC(1,I),1,P1(1,K),1)
            CALL DAXPY(N, TEMP, VEC(1,I), 1, P1(1,K), 1)
C
C THIS CHECKS FOR TOO GREAT A LOSS OF ORTHOGONALITY BETWEEN A
C NEW LANCZOS VECTOR AND A GOOD RITZ VECTOR.  THE ALGORITHM IS
C TERMINATED IF TOO MUCH ORTHOGONALITY IS LOST.
C
            IF (DABS(TEMP*BET(K,K)).GT.DBLE(FLOAT(N))*EPSRT*
     *        ANORM .AND. I.GT.NPERM) GO TO 380
   90    CONTINUE
  100 CONTINUE
C
C IF NECESSARY, THIS REORTHONORMALIZES P1 AND UPDATES BET.
C
  110 IF(.NOT. TEST) GO TO 160
      CALL DORTQR(N, N, NBLOCK, P1, ALP)
      TEST = .FALSE.
      IF(J .EQ. NBLOCK) GO TO 160
      DO 130 I = 1,NBLOCK
         IF(ALP(I,I) .GT. 0.0D0) GO TO 130
         M = J - 2*NBLOCK + I
         L = NBLOCK + 1
         DO 120 K = I,NBLOCK
            BET(I,K) = -BET(I,K)
            T(L,M) = -T(L,M)
            L = L - 1
            M = M + 1
  120    CONTINUE
  130 CONTINUE
C
C THIS IS THE LANCZOS STEP.
C
  160 CALL OP(N, NBLOCK, P1, P2)
      NOP = NOP + 1
      CALL IOVECT(N, NBLOCK, P1, J, 0)
C
C THIS COMPUTES P2=P2-P0*BET(TRANSPOSE)
C
      DO 180 I=1,NBLOCK
         DO 170 K=I,NBLOCK
            CALL DAXPY(N, -BET(I,K), P0(1,K), 1, P2(1,I), 1)
  170    CONTINUE
  180 CONTINUE
C
C THIS COMPUTES ALP AND P2=P2-P1*ALP.
C
      DO 200 I=1,NBLOCK
         DO 190 K=1,I
            II = I - K + 1
            ALP(II,K) = DDOT(N,P1(1,I),1,P2(1,K),1)
            CALL DAXPY(N, -ALP(II,K), P1(1,I), 1, P2(1,K), 1)
            IF (K.NE.I) CALL DAXPY(N, -ALP(II,K), P1(1,K),
     *        1, P2(1,I), 1)
  190   CONTINUE
  200 CONTINUE
C
C  REORTHOGONALIZATION OF THE SECOND BLOCK
C
      IF(J .NE. NBLOCK) GO TO 220
      DO 215 I=1,NBLOCK
         DO 210 K=1,I
            TEMP = DDOT(N,P1(1,I),1,P2(1,K),1)
            CALL DAXPY(N, -TEMP, P1(1,I), 1, P2(1,K), 1)
            IF (K.NE.I) CALL DAXPY(N, -TEMP, P1(1,K),
     *        1, P2(1,I), 1)
            II = I - K + 1
            ALP(II,K) = ALP(II,K) + TEMP            
  210   CONTINUE
  215 CONTINUE
C
C THIS ORTHONORMALIZES THE NEXT BLOCK
C
  220 CALL DORTQR(N, N, NBLOCK, P2, BET)
C
C THIS STORES ALP AND BET IN T.
C
      DO 250 I=1,NBLOCK
         M = J - NBLOCK + I
         DO 230 K=I,NBLOCK
            L = K - I + 1
            T(L,M) = ALP(L,I)
  230    CONTINUE
         DO 240 K=1,I
            L = NBLOCK - I + K + 1
            T(L,M) = BET(K,I)
  240    CONTINUE
  250 CONTINUE
C
C THIS NEGATES T IF SMALL IS FALSE.
C
      IF (SMALL) GO TO 280
      M = J - NBLOCK + 1
      DO 270 I=M,J
         DO 260 K=1,L
            T(K,I) = -T(K,I)
  260    CONTINUE
  270 CONTINUE
C
C THIS SHIFTS THE LANCZOS VECTORS
C
  280 CALL DCOPY(NBLOCK*N, P1, 1, P0, 1)
      CALL DCOPY(NBLOCK*N, P2, 1, P1, 1)
      CALL DLAGER(J, NBAND, J-NBLOCK+1, T, TMIN, TMAX)
      ANORM = DMAX1(RNORM, TMAX, -TMIN)
      IF (NUMBER.EQ.0) GO TO 305
C
C THIS COMPUTES THE EXTREME EIGENVALUES OF ALP.
C
      CALL DCOPY(NBLOCK, DZERO, 0, P2, 1)
      CALL DLAEIG(NBLOCK, NBLOCK, 1, 1, ALP, TARR, NBLOCK,
     1   P2, BOUND, ATEMP, D, VTEMP, EPS, TMIN, TMAX)
      ALPMIN = TARR(1)
      CALL DCOPY(NBLOCK, DZERO, 0, P2, 1)
      CALL DLAEIG(NBLOCK, NBLOCK, NBLOCK, NBLOCK, ALP, TARR,
     1  NBLOCK, P2, BOUND, ATEMP, D, VTEMP, EPS, TMIN, TMAX)
      ALPMAX = TARR(1)
C
C THIS COMPUTES ALP = BET(TRANSPOSE)*BET.
C
  305 DO 310 I = 1, NBLOCK
         DO 300 K = 1, I
            L = I - K + 1
            ALP(L,K) = DDOT(NBLOCK-I+1, BET(I,I), NBLOCK, BET(K,I),
     1        NBLOCK)
  300    CONTINUE
  310 CONTINUE
      IF(NUMBER .EQ. 0) GO TO 330
C
C THIS COMPUTES THE SMALLEST SINGULAR VALUE OF BET.
C
      CALL DCOPY(NBLOCK, DZERO, 0, P2, 1)
      CALL DLAEIG(NBLOCK, NBLOCK, 1, 1, ALP, TARR, NBLOCK,
     1  P2, BOUND, ATEMP, D, VTEMP, EPS, 0.0D0, ANORM*ANORM)
      BETMIN = DSQRT(TARR(1))
C
C THIS UPDATES TAU AND OTAU.
C
      DO 320 I=1,NUMBER
         TEMP = (TAU(I)*DMAX1(ALPMAX-VAL(I),VAL(I)-ALPMIN)
     *     +OTAU(I)*BETMAX+EPS*ANORM)/BETMIN
         IF (I.LE.NPERM) TEMP = TEMP + RES(I)/BETMIN
         OTAU(I) = TAU(I)
         TAU(I) = TEMP
  320 CONTINUE
C
C THIS COMPUTES THE LARGEST SINGULAR VALUE OF BET.
C
  330 CALL DCOPY(NBLOCK, DZERO, 0, P2, 1)
      CALL DLAEIG(NBLOCK, NBLOCK, NBLOCK, NBLOCK, ALP, TARR,
     1  NBLOCK, P2, BOUND, ATEMP, D, VTEMP, EPS, 0.0D0,
     2  ANORM*ANORM)
      BETMAX = DSQRT(TARR(1))
      IF (J.LE.2*NBLOCK) GO TO 80
C
C ------------------------------------------------------------------
C
C THIS SECTION COMPUTES AND EXAMINES THE SMALLEST NONGOOD AND
C LARGEST DESIRED EIGENVALUES OF T TO SEE IF A CLOSER LOOK
C IS JUSTIFIED.
C
      TOLG = EPSRT*ANORM
      TOLA = UTOL*RNORM
      IF(MAXJ-J .LT. NBLOCK .OR. (NOP .GE. MAXOP .AND.
     1  NLEFT .NE. 0)) GO TO 390
      GO TO 400

C
C ------------------------------------------------------------------
C
C THIS SECTION COMPUTES SOME EIGENVALUES AND EIGENVECTORS OF T TO
C SEE IF FURTHER ACTION IS INDICATED, ENTRY IS AT 380 OR 390 IF AN
C ITERATION (OR TERMINATION) IS KNOWN TO BE NEEDED, OTHERWISE ENTRY
C IS AT 400.
C
  380 J = J - NBLOCK
      IERR = -8
  390 IF (NLEFT.EQ.0) RETURN
      TEST = .TRUE.
  400 NTHETA = MIN0(J/2,NLEFT+1)
      CALL DLAEIG(J, NBAND, 1, NTHETA, T, VAL(NUMBER+1),
     1  MAXJ, S, BOUND, ATEMP, D, VTEMP, EPS, TMIN, TMAX)
      CALL DMVPC(NBLOCK, BET, MAXJ, J, S, NTHETA, ATEMP, VTEMP, D)
C
C THIS CHECKS FOR TERMINATION OF A CHECK RUN
C
      IF(NLEFT .NE. 0 .OR. J .LT. 6*NBLOCK) GO TO 410
      IF(VAL(NUMBER+1)-ATEMP(1) .GT. VAL(NPERM) - TOLA) GO TO 790 
C
C THIS UPDATES NLEFT BY EXAMINING THE COMPUTED EIGENVALUES OF T
C TO DETERMINE IF SOME PERMANENT VALUES ARE NO LONGER DESIRED.
C
 410  IF (NTHETA.LE.NLEFT) GO TO 470
      IF (NPERM.EQ.0) GO TO 430
      M = NUMBER + NLEFT + 1
      IF (VAL(M).GE.VAL(NPERM)) GO TO 430
      NPERM = NPERM - 1
      NGOOD = 0
      NUMBER = NPERM
      NLEFT = NLEFT + 1
      GO TO 400
C
C THIS UPDATES DELTA.
C
  430 M = NUMBER + NLEFT + 1
      DELTA = DMIN1(DELTA,VAL(M))
      ENOUGH = .TRUE.
      IF(NLEFT .EQ. 0) GO TO 80
      NTHETA = NLEFT
      VTEMP(NTHETA+1) = 1
C
C ------------------------------------------------------------------
C
C THIS SECTION EXAMINES THE COMPUTED EIGENPAIRS IN DETAIL.
C
C THIS CHECKS FOR ENOUGH ACCEPTABLE VALUES.
C
      IF (.NOT.(TEST .OR. ENOUGH)) GO TO 470
      DELTA = DMIN1(DELTA,ANORM)
      PNORM = DMAX1(RNORM,DMAX1(-VAL(NUMBER+1),DELTA))
      TOLA = UTOL*PNORM
      NSTART = 0
      DO 460 I=1,NTHETA
         M = NUMBER + I
         IF (DMIN1(ATEMP(I)*ATEMP(I)/(DELTA-VAL(M)),ATEMP(I))
     *     .GT.TOLA) GO TO 450
         IND(I) = -1
         GO TO 460
C
  450    ENOUGH = .FALSE.
         IF (.NOT.TEST) GO TO 470
         IND(I) = 1
         NSTART = NSTART + 1
  460 CONTINUE
C
C  COPY VALUES OF IND INTO VTEMP
C
      DO 465 I = 1,NTHETA
         VTEMP(I) = DBLE(FLOAT(IND(I)))
  465 CONTINUE
      GO TO 500
C
C THIS CHECKS FOR NEW GOOD VECTORS.
C
  470 NG = 0
      DO 490 I=1,NTHETA
         IF (VTEMP(I).GT.TOLG) GO TO 480
         NG = NG + 1
         VTEMP(I) = -1
         GO TO 490
C
  480    VTEMP(I) = 1
  490 CONTINUE
C
      IF (NG.LE.NGOOD) GO TO 80
      NSTART = NTHETA - NG
C
C ------------------------------------------------------------------
C
C THIS SECTION COMPUTES AND NORMALIZES THE INDICATED RITZ VECTORS.
C IF NEEDED (TEST = .TRUE.), NEW STARTING VECTORS ARE COMPUTED.
C
  500 TEST = TEST .AND. .NOT.ENOUGH
      NGOOD = NTHETA - NSTART
      NSTART = NSTART + 1
      NTHETA = NTHETA + 1
C
C THIS ALIGNS THE DESIRED (ACCEPTABLE OR GOOD) EIGENVALUES AND
C EIGENVECTORS OF T.  THE OTHER EIGENVECTORS ARE SAVED FOR
C FORMING STARTING VECTORS, IF NECESSARY.  IT ALSO SHIFTS THE
C EIGENVALUES TO OVERWRITE THE GOOD VALUES FROM THE PREVIOUS
C PAUSE.
C
      CALL DCOPY(NTHETA, VAL(NUMBER+1), 1, VAL(NPERM+1), 1)
      IF (NSTART.EQ.0) GO TO 580
      IF (NSTART.EQ.NTHETA) GO TO 530
      CALL DVSORT(NTHETA, VTEMP, ATEMP, 1, VAL(NPERM+1), MAXJ,
     *  J, S)
C
C THES ACCUMULATES THE J-VECTORS USED TO FORM THE STARTING
C VECTORS.
C
  530 IF (.NOT.TEST) NSTART = 0
      IF (.NOT.TEST) GO TO 580
C
C  FIND MINIMUM ATEMP VALUE TO AVOID POSSIBLE OVERFLOW
C
      TEMP = ATEMP(1)
      DO 535 I = 1, NSTART
         TEMP = DMIN1(TEMP, ATEMP(I))
  535 CONTINUE
      M = NGOOD + 1
      L = NGOOD + MIN0(NSTART,NBLOCK)
      DO 540 I=M,L
         CALL DSCAL(J, TEMP/ATEMP(I), S(1,I), 1)
  540 CONTINUE
      M = (NSTART-1)/NBLOCK
      IF (M.EQ.0) GO TO 570
      L = NGOOD + NBLOCK
      DO 560 I=1,M
         DO 550 K=1,NBLOCK
            L = L + 1
            IF (L.GT.NTHETA) GO TO 570
            I1 = NGOOD + K
            CALL DAXPY(J, TEMP/ATEMP(L), S(1,L), 1, S(1,I1), 1)
  550    CONTINUE
  560 CONTINUE
  570 NSTART = MIN0(NSTART,NBLOCK)
C
C THIS STORES THE RESIDUAL NORMS OF THE NEW PERMANENT VECTORS.
C
  580 IF (NGOOD.EQ.0 .OR. .NOT.(TEST .OR. ENOUGH)) GO TO 600
      DO 590 I=1,NGOOD
         M = NPERM + I
         RES(M) = ATEMP(I)
  590 CONTINUE
C
C THIS COMPUTES THE RITZ VECTORS BY SEQUENTIALLY RECALLING THE
C LANCZOS VECTORS.
C
  600 NUMBER = NPERM + NGOOD
      IF (TEST .OR. ENOUGH) CALL DCOPY(N*NBLOCK, DZERO, 0, P1, 1)
      IF (NGOOD.EQ.0) GO TO 620
      M = NPERM + 1
      DO 610 I=M,NUMBER
         CALL DCOPY(N, DZERO, 0, VEC(1,I), 1)
  610 CONTINUE
  620 DO 670 I=NBLOCK,J,NBLOCK
         CALL IOVECT(N, NBLOCK, P2, I, 1)
         DO 660 K=1,NBLOCK
            M = I - NBLOCK + K
            IF (NSTART.EQ.0) GO TO 640
            DO 630 L=1,NSTART
               I1 = NGOOD + L
               CALL DAXPY(N, S(M,I1), P2(1,K), 1, P1(1,L), 1)
  630       CONTINUE
  640       IF (NGOOD.EQ.0) GO TO 660
            DO 650 L=1,NGOOD
               I1 = L + NPERM
               CALL DAXPY(N, S(M,L), P2(1,K), 1, VEC(1,I1), 1)
  650       CONTINUE
  660    CONTINUE
  670 CONTINUE
      IF (TEST .OR. ENOUGH) GO TO 690
C
C THIS NORMALIZES THE RITZ VECTORS AND INITIALIZES THE
C TAU RECURRENCE.
C
      M = NPERM + 1
      DO 680 I=M,NUMBER
         TEMP = 1.0D0/DNRM2(N,VEC(1,I),1)
         CALL DSCAL(N, TEMP, VEC(1,I), 1)
         TAU(I) = 1.0D0
         OTAU(I) = 1.0D0
  680 CONTINUE
C
C  SHIFT S VECTORS TO ALIGN FOR LATER CALL TO DLAEIG
C
      CALL DCOPY(NTHETA, VAL(NPERM+1), 1, VTEMP, 1)
      CALL DVSORT(NTHETA, VTEMP, ATEMP, 0, TARR, MAXJ, J, S)
      GO TO 80
C
C ------------------------------------------------------------------
C
C THIS SECTION PREPARES TO ITERATE THE ALGORITHM BY SORTING THE
C PERMANENT VALUES, RESETTING SOME PARAMETERS, AND ORTHONORMALIZING
C THE PERMANENT VECTORS.
C
  690 IF (NGOOD.EQ.0 .AND. NOP.GE.MAXOP) GO TO 810
      IF (NGOOD.EQ.0) GO TO 30
C
C THIS ORTHONORMALIZES THE VECTORS
C
      CALL DORTQR(NMVEC, N, NPERM+NGOOD, VEC, S)
C
C THIS SORTS THE VALUES AND VECTORS.
C
      IF(NPERM .NE. 0) CALL DVSORT(NPERM+NGOOD, VAL, RES, 0, TEMP,
     *   NMVEC, N, VEC)
      NPERM = NPERM + NGOOD
      NLEFT = NLEFT - NGOOD
      RNORM = DMAX1(-VAL(1),VAL(NPERM))
C
C THIS DECIDES WHERE TO GO NEXT.
C
      IF (NOP.GE.MAXOP .AND. NLEFT.NE.0) GO TO 810
      IF (NLEFT.NE.0) GO TO 30
      IF (VAL(NVAL)-VAL(1).LT.TOLA) GO TO 790
C
C THIS DOES A CLUSTER TEST TO SEE IF A CHECK RUN IS NEEDED
C TO LOOK FOR UNDISCLOSED MULTIPLICITIES.
C
      M = NPERM - NBLOCK + 1
      IF (M.LE.0) RETURN
      DO 780 I=1,M
         L = I + NBLOCK - 1
         IF (VAL(L)-VAL(I).LT.TOLA) GO TO 30
  780 CONTINUE
C
C THIS DOES A CLUSTER TEST TO SEE IF A FINAL RAYLEIGH-RITZ
C PROCEDURE IS NEEDED.
C
  790 M = NPERM - NBLOCK
      IF (M.LE.0) RETURN
      DO 800 I=1,M
         L = I + NBLOCK
         IF (VAL(L)-VAL(I).GE.TOLA) GO TO 800
         RARITZ = .TRUE.
         RETURN
  800 CONTINUE
C
      RETURN
C
C ------------------------------------------------------------------
C
C THIS REPORTS THAT MAXOP WAS EXCEEDED.
C
  810 IERR = -2
      GO TO 790
C
      END