File: dnppla.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (419 lines) | stat: -rw-r--r-- 13,432 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
/* laso/dnppla.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__0 = 0;
static integer c__1 = 1;


/* ------------------------------------------------------------------ */

/*<    >*/
/* Subroutine */ int dnppla_(
        void (*op)(integer*,integer*,doublereal*,doublereal*),
        void (*iovect)(integer*,integer*,doublereal*,integer*,integer*),
        integer *n, integer *nperm,
        integer *nop, integer *nmval, doublereal *val, integer *nmvec, 
        doublereal *vec, integer *nblock, doublereal *h__, doublereal *hv, 
        doublereal *p, doublereal *q, doublereal *bound, doublereal *d__, 
        doublereal *delta, logical *small, logical *raritz, doublereal *eps)
{
    /* System generated locals */
    integer val_dim1, val_offset, vec_dim1, vec_offset, h_dim1, h_offset, 
            hv_dim1, hv_offset, p_dim1, p_offset, q_dim1, q_offset, i__1, 
            i__2, i__3, i__4;
    doublereal d__1;

    /* Local variables */
    integer i__, j, k, l, m, jj, kk;
    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
            integer *);
    doublereal hmin, hmax, temp;
    extern doublereal dnrm2_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
            doublereal *, integer *);
    doublereal dzero[1];
    extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 
            integer *, doublereal *, integer *), dlaeig_(integer *, integer *,
             integer *, integer *, doublereal *, doublereal *, integer *, 
            doublereal *, doublereal *, doublereal *, doublereal *, 
            doublereal *, doublereal *, doublereal *, doublereal *), dlager_(
            integer *, integer *, integer *, doublereal *, doublereal *, 
            doublereal *);


/*<       INTEGER N, NPERM, NOP, NMVAL, NMVEC, NBLOCK >*/
/*<       LOGICAL SMALL, RARITZ >*/
/*<    >*/
/*<       EXTERNAL OP, IOVECT >*/

/* THIS SUBROUTINE POST PROCESSES THE EIGENVECTORS.  BLOCK MATRIX */
/* VECTOR PRODUCTS ARE USED TO MINIMIZED THE NUMBER OF CALLS TO OP. */

/*<       INTEGER I, J, JJ, K, KK, L, M, MOD >*/
/*<       DOUBLE PRECISION HMIN, HMAX, TEMP, DDOT, DNRM2, DZERO(1) >*/
/*<       EXTERNAL DAXPY, DCOPY, DDOT, DLAGER, DLAEIG >*/

/* IF RARITZ IS .TRUE.  A FINAL RAYLEIGH-RITZ PROCEDURE IS APPLIED */
/* TO THE EIGENVECTORS. */

/*<       DZERO(1) = 0.0D0 >*/
    /* Parameter adjustments */
    q_dim1 = *n;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    p_dim1 = *n;
    p_offset = 1 + p_dim1;
    p -= p_offset;
    hv_dim1 = *nperm;
    hv_offset = 1 + hv_dim1;
    hv -= hv_offset;
    h_dim1 = *nperm;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    val_dim1 = *nmval;
    val_offset = 1 + val_dim1;
    val -= val_offset;
    vec_dim1 = *nmvec;
    vec_offset = 1 + vec_dim1;
    vec -= vec_offset;
    --bound;
    --d__;

    /* Function Body */
    dzero[0] = 0.;
/*<       IF (.NOT.RARITZ) GO TO 190 >*/
    if (! (*raritz)) {
        goto L190;
    }

/* ------------------------------------------------------------------ */

/* THIS CONSTRUCTS H=Q*AQ, WHERE THE COLUMNS OF Q ARE THE */
/* APPROXIMATE EIGENVECTORS.  TEMP = -1 IS USED WHEN SMALL IS */
/* FALSE TO AVOID HAVING TO RESORT THE EIGENVALUES AND EIGENVECTORS */
/* COMPUTED BY DLAEIG. */

/*<       CALL DCOPY(NPERM*NPERM, DZERO, 0, H, 1) >*/
    i__1 = *nperm * *nperm;
    dcopy_(&i__1, dzero, &c__0, &h__[h_offset], &c__1);
/*<       TEMP = -1.0D0 >*/
    temp = -1.;
/*<       IF (SMALL) TEMP = 1.0D0 >*/
    if (*small) {
        temp = 1.;
    }
/*<       M = MOD(NPERM,NBLOCK) >*/
    m = *nperm % *nblock;
/*<       IF (M.EQ.0) GO TO 40 >*/
    if (m == 0) {
        goto L40;
    }
/*<       DO 10 I=1,M >*/
    i__1 = m;
    for (i__ = 1; i__ <= i__1; ++i__) {
/*<          CALL DCOPY(N, VEC(1,I), 1, P(1,I), 1) >*/
        dcopy_(n, &vec[i__ * vec_dim1 + 1], &c__1, &p[i__ * p_dim1 + 1], &
                c__1);
/*<    10 CONTINUE >*/
/* L10: */
    }
/*<       CALL IOVECT(N, M, P, M, 0) >*/
    (*iovect)(n, &m, &p[p_offset], &m, &c__0);
/*<       CALL OP(N, M, P, Q) >*/
    (*op)(n, &m, &p[p_offset], &q[q_offset]);
/*<       NOP = NOP + 1 >*/
    ++(*nop);
/*<       DO 30 I=1,M >*/
    i__1 = m;
    for (i__ = 1; i__ <= i__1; ++i__) {
/*<          DO 20 J=I,NPERM >*/
        i__2 = *nperm;
        for (j = i__; j <= i__2; ++j) {
/*<             JJ = J - I + 1 >*/
            jj = j - i__ + 1;
/*<             H(JJ,I) = TEMP*DDOT(N,VEC(1,J),1,Q(1,I),1) >*/
            h__[jj + i__ * h_dim1] = temp * ddot_(n, &vec[j * vec_dim1 + 1], &
                    c__1, &q[i__ * q_dim1 + 1], &c__1);
/*<    20    CONTINUE >*/
/* L20: */
        }
/*<    30 CONTINUE >*/
/* L30: */
    }
/*<       IF (NPERM.LT.NBLOCK) GO TO 90 >*/
    if (*nperm < *nblock) {
        goto L90;
    }
/*<    40 M = M + NBLOCK >*/
L40:
    m += *nblock;
/*<       DO 80 I=M,NPERM,NBLOCK >*/
    i__1 = *nperm;
    i__2 = *nblock;
    for (i__ = m; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/*<          DO 50 J=1,NBLOCK >*/
        i__3 = *nblock;
        for (j = 1; j <= i__3; ++j) {
/*<             L = I - NBLOCK + J >*/
            l = i__ - *nblock + j;
/*<             CALL DCOPY(N, VEC(1,L), 1, P(1,J), 1) >*/
            dcopy_(n, &vec[l * vec_dim1 + 1], &c__1, &p[j * p_dim1 + 1], &
                    c__1);
/*<    50    CONTINUE >*/
/* L50: */
        }
/*<          CALL IOVECT(N, NBLOCK, P, I, 0) >*/
        (*iovect)(n, nblock, &p[p_offset], &i__, &c__0);
/*<          CALL OP(N, NBLOCK, P, Q) >*/
        (*op)(n, nblock, &p[p_offset], &q[q_offset]);
/*<          NOP = NOP + 1 >*/
        ++(*nop);
/*<          DO 70 J=1,NBLOCK >*/
        i__3 = *nblock;
        for (j = 1; j <= i__3; ++j) {
/*<             L = I - NBLOCK + J >*/
            l = i__ - *nblock + j;
/*<             DO 60 K=L,NPERM >*/
            i__4 = *nperm;
            for (k = l; k <= i__4; ++k) {
/*<                KK = K - L + 1 >*/
                kk = k - l + 1;
/*<                H(KK,L) = TEMP*DDOT(N,VEC(1,K),1,Q(1,J),1) >*/
                h__[kk + l * h_dim1] = temp * ddot_(n, &vec[k * vec_dim1 + 1],
                         &c__1, &q[j * q_dim1 + 1], &c__1);
/*<    60       CONTINUE >*/
/* L60: */
            }
/*<    70      CONTINUE >*/
/* L70: */
        }
/*<    80 CONTINUE >*/
/* L80: */
    }

/* THIS COMPUTES THE SPECTRAL DECOMPOSITION OF H. */

/*<    90 HMIN = H(1,1) >*/
L90:
    hmin = h__[h_dim1 + 1];
/*<       HMAX = H(1,1) >*/
    hmax = h__[h_dim1 + 1];
/*<       CALL DLAGER(NPERM, NPERM, 1, H, HMIN, HMAX) >*/
    dlager_(nperm, nperm, &c__1, &h__[h_offset], &hmin, &hmax);
/*<    >*/
    dlaeig_(nperm, nperm, &c__1, nperm, &h__[h_offset], &val[val_offset], 
            nperm, &hv[hv_offset], &bound[1], &p[p_offset], &d__[1], &q[
            q_offset], eps, &hmin, &hmax);

/* THIS COMPUTES THE RITZ VECTORS--THE COLUMNS OF */
/* Y = QS WHERE S IS THE MATRIX OF EIGENVECTORS OF H. */

/*<       DO 120 I=1,NPERM >*/
    i__2 = *nperm;
    for (i__ = 1; i__ <= i__2; ++i__) {
/*<          CALL DCOPY(N, DZERO, 0, VEC(1,I), 1) >*/
        dcopy_(n, dzero, &c__0, &vec[i__ * vec_dim1 + 1], &c__1);
/*<   120 CONTINUE >*/
/* L120: */
    }
/*<       M = MOD(NPERM,NBLOCK) >*/
    m = *nperm % *nblock;
/*<       IF (M.EQ.0) GO TO 150 >*/
    if (m == 0) {
        goto L150;
    }
/*<       CALL IOVECT(N, M, P, M, 1) >*/
    (*iovect)(n, &m, &p[p_offset], &m, &c__1);
/*<       DO 140 I=1,M >*/
    i__2 = m;
    for (i__ = 1; i__ <= i__2; ++i__) {
/*<          DO 130 J=1,NPERM >*/
        i__1 = *nperm;
        for (j = 1; j <= i__1; ++j) {
/*<             CALL DAXPY(N, HV(I,J), P(1,I), 1, VEC(1,J), 1) >*/
            daxpy_(n, &hv[i__ + j * hv_dim1], &p[i__ * p_dim1 + 1], &c__1, &
                    vec[j * vec_dim1 + 1], &c__1);
/*<   130    CONTINUE >*/
/* L130: */
        }
/*<   140 CONTINUE >*/
/* L140: */
    }
/*<       IF (NPERM.LT.NBLOCK) GO TO 190 >*/
    if (*nperm < *nblock) {
        goto L190;
    }
/*<   150 M = M + NBLOCK >*/
L150:
    m += *nblock;
/*<       DO 180 I=M,NPERM,NBLOCK >*/
    i__2 = *nperm;
    i__1 = *nblock;
    for (i__ = m; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
/*<          CALL IOVECT(N, NBLOCK, P, I, 1) >*/
        (*iovect)(n, nblock, &p[p_offset], &i__, &c__1);
/*<          DO 170 J=1,NBLOCK >*/
        i__3 = *nblock;
        for (j = 1; j <= i__3; ++j) {
/*<             L = I - NBLOCK + J >*/
            l = i__ - *nblock + j;
/*<             DO 160 K=1,NPERM >*/
            i__4 = *nperm;
            for (k = 1; k <= i__4; ++k) {
/*<                CALL DAXPY(N, HV(L,K), P(1,J), 1, VEC(1,K), 1) >*/
                daxpy_(n, &hv[l + k * hv_dim1], &p[j * p_dim1 + 1], &c__1, &
                        vec[k * vec_dim1 + 1], &c__1);
/*<   160       CONTINUE >*/
/* L160: */
            }
/*<   170    CONTINUE >*/
/* L170: */
        }
/*<   180 CONTINUE >*/
/* L180: */
    }

/* ------------------------------------------------------------------ */

/* THIS SECTION COMPUTES THE RAYLEIGH QUOTIENTS (IN VAL(*,1)) */
/* AND RESIDUAL NORMS (IN VAL(*,2)) OF THE EIGENVECTORS. */

/*<   190 IF (.NOT.SMALL) DELTA = -DELTA >*/
L190:
    if (! (*small)) {
        *delta = -(*delta);
    }
/*<       M = MOD(NPERM,NBLOCK) >*/
    m = *nperm % *nblock;
/*<       IF (M.EQ.0) GO TO 220 >*/
    if (m == 0) {
        goto L220;
    }
/*<       DO 200 I=1,M >*/
    i__1 = m;
    for (i__ = 1; i__ <= i__1; ++i__) {
/*<          CALL DCOPY(N, VEC(1,I), 1, P(1,I), 1) >*/
        dcopy_(n, &vec[i__ * vec_dim1 + 1], &c__1, &p[i__ * p_dim1 + 1], &
                c__1);
/*<   200 CONTINUE >*/
/* L200: */
    }
/*<       CALL OP(N, M, P, Q) >*/
    (*op)(n, &m, &p[p_offset], &q[q_offset]);
/*<       NOP = NOP + 1 >*/
    ++(*nop);
/*<       DO 210 I=1,M >*/
    i__1 = m;
    for (i__ = 1; i__ <= i__1; ++i__) {
/*<          VAL(I,1) = DDOT(N,P(1,I),1,Q(1,I),1) >*/
        val[i__ + val_dim1] = ddot_(n, &p[i__ * p_dim1 + 1], &c__1, &q[i__ * 
                q_dim1 + 1], &c__1);
/*<          CALL DAXPY(N, -VAL(I,1), P(1,I), 1, Q(1,I), 1) >*/
        d__1 = -val[i__ + val_dim1];
        daxpy_(n, &d__1, &p[i__ * p_dim1 + 1], &c__1, &q[i__ * q_dim1 + 1], &
                c__1);
/*<          VAL(I,2) = DNRM2(N,Q(1,I),1) >*/
        val[i__ + (val_dim1 << 1)] = dnrm2_(n, &q[i__ * q_dim1 + 1], &c__1);
/*<   210 CONTINUE >*/
/* L210: */
    }
/*<       IF (NPERM.LT.NBLOCK) GO TO 260 >*/
    if (*nperm < *nblock) {
        goto L260;
    }
/*<   220 M = M + 1 >*/
L220:
    ++m;
/*<       DO 250 I=M,NPERM,NBLOCK >*/
    i__1 = *nperm;
    i__2 = *nblock;
    for (i__ = m; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/*<          DO 230 J=1,NBLOCK >*/
        i__3 = *nblock;
        for (j = 1; j <= i__3; ++j) {
/*<             L = I - 1 + J >*/
            l = i__ - 1 + j;
/*<             CALL DCOPY(N, VEC(1,L), 1, P(1,J), 1) >*/
            dcopy_(n, &vec[l * vec_dim1 + 1], &c__1, &p[j * p_dim1 + 1], &
                    c__1);
/*<   230    CONTINUE >*/
/* L230: */
        }
/*<          CALL OP(N, NBLOCK, P, Q) >*/
        (*op)(n, nblock, &p[p_offset], &q[q_offset]);
/*<          NOP = NOP + 1 >*/
        ++(*nop);
/*<          DO 240 J=1,NBLOCK >*/
        i__3 = *nblock;
        for (j = 1; j <= i__3; ++j) {
/*<             L = I - 1 + J >*/
            l = i__ - 1 + j;
/*<             VAL(L,1) = DDOT(N,P(1,J),1,Q(1,J),1) >*/
            val[l + val_dim1] = ddot_(n, &p[j * p_dim1 + 1], &c__1, &q[j * 
                    q_dim1 + 1], &c__1);
/*<             CALL DAXPY(N, -VAL(L,1), P(1,J), 1, Q(1,J), 1) >*/
            d__1 = -val[l + val_dim1];
            daxpy_(n, &d__1, &p[j * p_dim1 + 1], &c__1, &q[j * q_dim1 + 1], &
                    c__1);
/*<             VAL(L,2) = DNRM2(N,Q(1,J),1) >*/
            val[l + (val_dim1 << 1)] = dnrm2_(n, &q[j * q_dim1 + 1], &c__1);
/*<   240    CONTINUE >*/
/* L240: */
        }
/*<   250 CONTINUE >*/
/* L250: */
    }

/* THIS COMPUTES THE ACCURACY ESTIMATES.  FOR CONSISTENCY WITH DILASO */
/* A DO LOOP IS NOT USED. */

/*<   260 I = 0 >*/
L260:
    i__ = 0;
/*<   270 I = I + 1 >*/
L270:
    ++i__;
/*<       IF (I.GT.NPERM) RETURN >*/
    if (i__ > *nperm) {
        return 0;
    }
/*<       TEMP = DELTA - VAL(I,1) >*/
    temp = *delta - val[i__ + val_dim1];
/*<       IF (.NOT.SMALL) TEMP = -TEMP >*/
    if (! (*small)) {
        temp = -temp;
    }
/*<       VAL(I,4) = 0.0D0 >*/
    val[i__ + (val_dim1 << 2)] = 0.;
/*<       IF (TEMP.GT.0.0D0) VAL(I,4) = VAL(I,2)/TEMP >*/
    if (temp > 0.) {
        val[i__ + (val_dim1 << 2)] = val[i__ + (val_dim1 << 1)] / temp;
    }
/*<       VAL(I,3) = VAL(I,4)*VAL(I,2) >*/
    val[i__ + val_dim1 * 3] = val[i__ + (val_dim1 << 2)] * val[i__ + (
            val_dim1 << 1)];
/*<       GO TO 270 >*/
    goto L270;

/*<       END >*/
} /* dnppla_ */

#ifdef __cplusplus
        }
#endif