File: dortqr.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (183 lines) | stat: -rw-r--r-- 5,670 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/* laso/dortqr.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__1 = 1;


/* ------------------------------------------------------------------ */

/*<       SUBROUTINE DORTQR(NZ, N, NBLOCK, Z, B) >*/
/* Subroutine */ int dortqr_(integer *nz, integer *n, integer *nblock, 
        doublereal *z__, doublereal *b)
{
    /* System generated locals */
    integer z_dim1, z_offset, b_dim1, b_offset, i__1, i__2;
    doublereal d__1;

    /* Builtin functions */
    double d_sign(doublereal *, doublereal *);

    /* Local variables */
    integer i__, j, k, m;
    doublereal tau;
    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
            integer *);
    doublereal temp;
    extern doublereal dnrm2_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
            integer *);
    doublereal sigma;
    extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 
            integer *, doublereal *, integer *);
    integer length;


/*<       INTEGER NZ, N, NBLOCK >*/
/*<       DOUBLE PRECISION Z(NZ,1), B(NBLOCK,1) >*/

/* THIS SUBROUTINE COMPUTES THE QR FACTORIZATION OF THE N X NBLOCK */
/* MATRIX Z.  Q IS FORMED IN PLACE AND RETURNED IN Z.  R IS */
/* RETURNED IN B. */

/*<       INTEGER I, J, K, LENGTH, M >*/
/*<       DOUBLE PRECISION SIGMA, TAU, TEMP, DDOT, DNRM2, DSIGN >*/
/*<       EXTERNAL DAXPY, DDOT, DNRM2, DSCAL >*/

/* THIS SECTION REDUCES Z TO TRIANGULAR FORM. */

/*<       DO 30 I=1,NBLOCK >*/
    /* Parameter adjustments */
    z_dim1 = *nz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    b_dim1 = *nblock;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    i__1 = *nblock;
    for (i__ = 1; i__ <= i__1; ++i__) {

/* THIS FORMS THE ITH REFLECTION. */

/*<          LENGTH = N - I + 1 >*/
        length = *n - i__ + 1;
/*<          SIGMA = DSIGN(DNRM2(LENGTH,Z(I,I),1),Z(I,I)) >*/
        d__1 = dnrm2_(&length, &z__[i__ + i__ * z_dim1], &c__1);
        sigma = d_sign(&d__1, &z__[i__ + i__ * z_dim1]);
/*<          B(I,I) = -SIGMA >*/
        b[i__ + i__ * b_dim1] = -sigma;
/*<          Z(I,I) = Z(I,I) + SIGMA >*/
        z__[i__ + i__ * z_dim1] += sigma;
/*<          TAU = SIGMA*Z(I,I) >*/
        tau = sigma * z__[i__ + i__ * z_dim1];
/*<          IF (I.EQ.NBLOCK) GO TO 30 >*/
        if (i__ == *nblock) {
            goto L30;
        }
/*<          J = I + 1 >*/
        j = i__ + 1;

/* THIS APPLIES THE ROTATION TO THE REST OF THE COLUMNS. */

/*<          DO 20 K=J,NBLOCK >*/
        i__2 = *nblock;
        for (k = j; k <= i__2; ++k) {
/*<             IF (TAU.EQ.0.0D0) GO TO 10 >*/
            if (tau == 0.) {
                goto L10;
            }
/*<             TEMP = -DDOT(LENGTH,Z(I,I),1,Z(I,K),1)/TAU >*/
            temp = -ddot_(&length, &z__[i__ + i__ * z_dim1], &c__1, &z__[i__ 
                    + k * z_dim1], &c__1) / tau;
/*<             CALL DAXPY(LENGTH, TEMP, Z(I,I), 1, Z(I,K), 1) >*/
            daxpy_(&length, &temp, &z__[i__ + i__ * z_dim1], &c__1, &z__[i__ 
                    + k * z_dim1], &c__1);
/*<    10       B(I,K) = Z(I,K) >*/
L10:
            b[i__ + k * b_dim1] = z__[i__ + k * z_dim1];
/*<             Z(I,K) = 0.0D0 >*/
            z__[i__ + k * z_dim1] = 0.;
/*<    20    CONTINUE >*/
/* L20: */
        }
/*<    30 CONTINUE >*/
L30:
        ;
    }

/* THIS ACCUMULATES THE REFLECTIONS IN REVERSE ORDER. */

/*<       DO 70 M=1,NBLOCK >*/
    i__1 = *nblock;
    for (m = 1; m <= i__1; ++m) {

/* THIS RECREATES THE ITH = NBLOCK-M+1)TH REFLECTION. */

/*<          I = NBLOCK + 1 - M >*/
        i__ = *nblock + 1 - m;
/*<          SIGMA = -B(I,I) >*/
        sigma = -b[i__ + i__ * b_dim1];
/*<          TAU = Z(I,I)*SIGMA >*/
        tau = z__[i__ + i__ * z_dim1] * sigma;
/*<          IF (TAU.EQ.0.0D0) GO TO 60 >*/
        if (tau == 0.) {
            goto L60;
        }
/*<          LENGTH = N - NBLOCK + M >*/
        length = *n - *nblock + m;
/*<          IF (I.EQ.NBLOCK) GO TO 50 >*/
        if (i__ == *nblock) {
            goto L50;
        }
/*<          J = I + 1 >*/
        j = i__ + 1;

/* THIS APPLIES IT TO THE LATER COLUMNS. */

/*<          DO 40 K=J,NBLOCK >*/
        i__2 = *nblock;
        for (k = j; k <= i__2; ++k) {
/*<             TEMP = -DDOT(LENGTH,Z(I,I),1,Z(I,K),1)/TAU >*/
            temp = -ddot_(&length, &z__[i__ + i__ * z_dim1], &c__1, &z__[i__ 
                    + k * z_dim1], &c__1) / tau;
/*<             CALL DAXPY(LENGTH, TEMP, Z(I,I), 1, Z(I,K), 1) >*/
            daxpy_(&length, &temp, &z__[i__ + i__ * z_dim1], &c__1, &z__[i__ 
                    + k * z_dim1], &c__1);
/*<    40    CONTINUE >*/
/* L40: */
        }
/*<    50    CALL DSCAL(LENGTH, -1.0D0/SIGMA, Z(I,I), 1) >*/
L50:
        d__1 = -1. / sigma;
        dscal_(&length, &d__1, &z__[i__ + i__ * z_dim1], &c__1);
/*<    60    Z(I,I) = 1.0D0 + Z(I,I) >*/
L60:
        z__[i__ + i__ * z_dim1] += 1.;
/*<    70 CONTINUE >*/
/* L70: */
    }
/*<       RETURN >*/
    return 0;
/*<       END >*/
} /* dortqr_ */

#ifdef __cplusplus
        }
#endif