1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
/* laso/dortqr.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
/* ------------------------------------------------------------------ */
/*< SUBROUTINE DORTQR(NZ, N, NBLOCK, Z, B) >*/
/* Subroutine */ int dortqr_(integer *nz, integer *n, integer *nblock,
doublereal *z__, doublereal *b)
{
/* System generated locals */
integer z_dim1, z_offset, b_dim1, b_offset, i__1, i__2;
doublereal d__1;
/* Builtin functions */
double d_sign(doublereal *, doublereal *);
/* Local variables */
integer i__, j, k, m;
doublereal tau;
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
integer *);
doublereal temp;
extern doublereal dnrm2_(integer *, doublereal *, integer *);
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
doublereal sigma;
extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *);
integer length;
/*< INTEGER NZ, N, NBLOCK >*/
/*< DOUBLE PRECISION Z(NZ,1), B(NBLOCK,1) >*/
/* THIS SUBROUTINE COMPUTES THE QR FACTORIZATION OF THE N X NBLOCK */
/* MATRIX Z. Q IS FORMED IN PLACE AND RETURNED IN Z. R IS */
/* RETURNED IN B. */
/*< INTEGER I, J, K, LENGTH, M >*/
/*< DOUBLE PRECISION SIGMA, TAU, TEMP, DDOT, DNRM2, DSIGN >*/
/*< EXTERNAL DAXPY, DDOT, DNRM2, DSCAL >*/
/* THIS SECTION REDUCES Z TO TRIANGULAR FORM. */
/*< DO 30 I=1,NBLOCK >*/
/* Parameter adjustments */
z_dim1 = *nz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
b_dim1 = *nblock;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
i__1 = *nblock;
for (i__ = 1; i__ <= i__1; ++i__) {
/* THIS FORMS THE ITH REFLECTION. */
/*< LENGTH = N - I + 1 >*/
length = *n - i__ + 1;
/*< SIGMA = DSIGN(DNRM2(LENGTH,Z(I,I),1),Z(I,I)) >*/
d__1 = dnrm2_(&length, &z__[i__ + i__ * z_dim1], &c__1);
sigma = d_sign(&d__1, &z__[i__ + i__ * z_dim1]);
/*< B(I,I) = -SIGMA >*/
b[i__ + i__ * b_dim1] = -sigma;
/*< Z(I,I) = Z(I,I) + SIGMA >*/
z__[i__ + i__ * z_dim1] += sigma;
/*< TAU = SIGMA*Z(I,I) >*/
tau = sigma * z__[i__ + i__ * z_dim1];
/*< IF (I.EQ.NBLOCK) GO TO 30 >*/
if (i__ == *nblock) {
goto L30;
}
/*< J = I + 1 >*/
j = i__ + 1;
/* THIS APPLIES THE ROTATION TO THE REST OF THE COLUMNS. */
/*< DO 20 K=J,NBLOCK >*/
i__2 = *nblock;
for (k = j; k <= i__2; ++k) {
/*< IF (TAU.EQ.0.0D0) GO TO 10 >*/
if (tau == 0.) {
goto L10;
}
/*< TEMP = -DDOT(LENGTH,Z(I,I),1,Z(I,K),1)/TAU >*/
temp = -ddot_(&length, &z__[i__ + i__ * z_dim1], &c__1, &z__[i__
+ k * z_dim1], &c__1) / tau;
/*< CALL DAXPY(LENGTH, TEMP, Z(I,I), 1, Z(I,K), 1) >*/
daxpy_(&length, &temp, &z__[i__ + i__ * z_dim1], &c__1, &z__[i__
+ k * z_dim1], &c__1);
/*< 10 B(I,K) = Z(I,K) >*/
L10:
b[i__ + k * b_dim1] = z__[i__ + k * z_dim1];
/*< Z(I,K) = 0.0D0 >*/
z__[i__ + k * z_dim1] = 0.;
/*< 20 CONTINUE >*/
/* L20: */
}
/*< 30 CONTINUE >*/
L30:
;
}
/* THIS ACCUMULATES THE REFLECTIONS IN REVERSE ORDER. */
/*< DO 70 M=1,NBLOCK >*/
i__1 = *nblock;
for (m = 1; m <= i__1; ++m) {
/* THIS RECREATES THE ITH = NBLOCK-M+1)TH REFLECTION. */
/*< I = NBLOCK + 1 - M >*/
i__ = *nblock + 1 - m;
/*< SIGMA = -B(I,I) >*/
sigma = -b[i__ + i__ * b_dim1];
/*< TAU = Z(I,I)*SIGMA >*/
tau = z__[i__ + i__ * z_dim1] * sigma;
/*< IF (TAU.EQ.0.0D0) GO TO 60 >*/
if (tau == 0.) {
goto L60;
}
/*< LENGTH = N - NBLOCK + M >*/
length = *n - *nblock + m;
/*< IF (I.EQ.NBLOCK) GO TO 50 >*/
if (i__ == *nblock) {
goto L50;
}
/*< J = I + 1 >*/
j = i__ + 1;
/* THIS APPLIES IT TO THE LATER COLUMNS. */
/*< DO 40 K=J,NBLOCK >*/
i__2 = *nblock;
for (k = j; k <= i__2; ++k) {
/*< TEMP = -DDOT(LENGTH,Z(I,I),1,Z(I,K),1)/TAU >*/
temp = -ddot_(&length, &z__[i__ + i__ * z_dim1], &c__1, &z__[i__
+ k * z_dim1], &c__1) / tau;
/*< CALL DAXPY(LENGTH, TEMP, Z(I,I), 1, Z(I,K), 1) >*/
daxpy_(&length, &temp, &z__[i__ + i__ * z_dim1], &c__1, &z__[i__
+ k * z_dim1], &c__1);
/*< 40 CONTINUE >*/
/* L40: */
}
/*< 50 CALL DSCAL(LENGTH, -1.0D0/SIGMA, Z(I,I), 1) >*/
L50:
d__1 = -1. / sigma;
dscal_(&length, &d__1, &z__[i__ + i__ * z_dim1], &c__1);
/*< 60 Z(I,I) = 1.0D0 + Z(I,I) >*/
L60:
z__[i__ + i__ * z_dim1] += 1.;
/*< 70 CONTINUE >*/
/* L70: */
}
/*< RETURN >*/
return 0;
/*< END >*/
} /* dortqr_ */
#ifdef __cplusplus
}
#endif
|