1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
subroutine dposl(a,lda,n,b)
integer lda,n
double precision a(lda,1),b(1)
c
c dposl solves the double precision symmetric positive definite
c system a * x = b
c using the factors computed by dpoco or dpofa.
c
c on entry
c
c a double precision(lda, n)
c the output from dpoco or dpofa.
c
c lda integer
c the leading dimension of the array a .
c
c n integer
c the order of the matrix a .
c
c b double precision(n)
c the right hand side vector.
c
c on return
c
c b the solution vector x .
c
c error condition
c
c a division by zero will occur if the input factor contains
c a zero on the diagonal. technically this indicates
c singularity but it is usually caused by improper subroutine
c arguments. it will not occur if the subroutines are called
c correctly and info .eq. 0 .
c
c to compute inverse(a) * c where c is a matrix
c with p columns
c call dpoco(a,lda,n,rcond,z,info)
c if (rcond is too small .or. info .ne. 0) go to ...
c do 10 j = 1, p
c call dposl(a,lda,n,c(1,j))
c 10 continue
c
c linpack. this version dated 08/14/78 .
c cleve moler, university of new mexico, argonne national lab.
c
c subroutines and functions
c
c blas daxpy,ddot
c
c internal variables
c
double precision ddot,t
integer k,kb
c
c solve trans(r)*y = b
c
do 10 k = 1, n
t = ddot(k-1,a(1,k),1,b(1),1)
b(k) = (b(k) - t)/a(k,k)
10 continue
c
c solve r*x = y
c
do 20 kb = 1, n
k = n + 1 - kb
b(k) = b(k)/a(k,k)
t = -b(k)
call daxpy(k-1,t,a(1,k),1,b(1),1)
20 continue
return
end
|