File: ssvdc.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (1045 lines) | stat: -rw-r--r-- 31,116 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
/* linpack/ssvdc.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

/* This code expects correct IEEE rounding behaviour which is not
   always provided.  The source should be built with -ffloat-store.
   A note from the GCC man page:

   -ffloat-store
    Do  not  store floating point variables in registers.  This pre-
    vents undesirable excess precision on machines such as the 68000
    where  the floating registers (of the 68881) keep more precision
    than a double is supposed to have.

    For most programs, the excess precision does only  good,  but  a
    few  programs  rely  on  the precise definition of IEEE floating
    point.  Use `-ffloat-store' for such programs.  */

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__1 = 1;
static real c_b44 = (float)-1.;

/*<       subroutine ssvdc(x,ldx,n,p,s,e,u,ldu,v,ldv,work,job,info) >*/
/* Subroutine */ int ssvdc_(real *x, integer *ldx, integer *n, integer *p, 
        real *s, real *e, real *u, integer *ldu, real *v, integer *ldv, real *
        work, integer *job, integer *info)
{
    /* System generated locals */
    integer x_dim1, x_offset, u_dim1, u_offset, v_dim1, v_offset, i__1, i__2, 
            i__3;
    real r__1, r__2, r__3, r__4, r__5, r__6, r__7;

    /* Builtin functions */
    double r_sign(real *, real *), sqrt(doublereal);

    /* Local variables */
    real b, c__, f, g;
    integer i__, j, k, l=0, m;
    real t, t1, el;
    integer kk;
    real cs;
    integer ll, mm, ls=0;
    real sl;
    integer lu;
    real sm, sn;
    integer lm1, mm1, lp1, mp1, nct, ncu, lls, nrt;
    real emm1, smm1;
    integer kase, jobu, iter;
    extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
    real test;
    extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, 
            integer *, real *, real *);
    integer nctp1;
    extern doublereal snrm2_(integer *, real *, integer *);
    integer nrtp1;
    real scale;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    real shift;
    integer maxit;
    extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *, 
            integer *);
    logical wantu, wantv;
    extern /* Subroutine */ int srotg_(real *, real *, real *, real *), 
            saxpy_(integer *, real *, real *, integer *, real *, integer *);
    real ztest;

/*<       integer ldx,n,p,ldu,ldv,job,info >*/
/*<       real x(ldx,1),s(1),e(1),u(ldu,1),v(ldv,1),work(1) >*/


/*     ssvdc is a subroutine to reduce a real nxp matrix x by */
/*     orthogonal transformations u and v to diagonal form.  the */
/*     diagonal elements s(i) are the singular values of x.  the */
/*     columns of u are the corresponding left singular vectors, */
/*     and the columns of v the right singular vectors. */

/*     on entry */

/*         x         real(ldx,p), where ldx.ge.n. */
/*                   x contains the matrix whose singular value */
/*                   decomposition is to be computed.  x is */
/*                   destroyed by ssvdc. */

/*         ldx       integer. */
/*                   ldx is the leading dimension of the array x. */

/*         n         integer. */
/*                   n is the number of rows of the matrix x. */

/*         p         integer. */
/*                   p is the number of columns of the matrix x. */

/*         ldu       integer. */
/*                   ldu is the leading dimension of the array u. */
/*                   (see below). */

/*         ldv       integer. */
/*                   ldv is the leading dimension of the array v. */
/*                   (see below). */

/*         work      real(n). */
/*                   work is a scratch array. */

/*         job       integer. */
/*                   job controls the computation of the singular */
/*                   vectors.  it has the decimal expansion ab */
/*                   with the following meaning */

/*                        a.eq.0    do not compute the left singular */
/*                                  vectors. */
/*                        a.eq.1    return the n left singular vectors */
/*                                  in u. */
/*                        a.ge.2    return the first min(n,p) singular */
/*                                  vectors in u. */
/*                        b.eq.0    do not compute the right singular */
/*                                  vectors. */
/*                        b.eq.1    return the right singular vectors */
/*                                  in v. */

/*     on return */

/*         s         real(mm), where mm=min(n+1,p). */
/*                   the first min(n,p) entries of s contain the */
/*                   singular values of x arranged in descending */
/*                   order of magnitude. */

/*         e         real(p). */
/*                   e ordinarily contains zeros.  however see the */
/*                   discussion of info for exceptions. */

/*         u         real(ldu,k), where ldu.ge.n.  if joba.eq.1 then */
/*                                   k.eq.n, if joba.ge.2 then */
/*                                   k.eq.min(n,p). */
/*                   u contains the matrix of left singular vectors. */
/*                   u is not referenced if joba.eq.0.  if n.le.p */
/*                   or if joba.eq.2, then u may be identified with x */
/*                   in the subroutine call. */

/*         v         real(ldv,p), where ldv.ge.p. */
/*                   v contains the matrix of right singular vectors. */
/*                   v is not referenced if job.eq.0.  if p.le.n, */
/*                   then v may be identified with x in the */
/*                   subroutine call. */

/*         info      integer. */
/*                   the singular values (and their corresponding */
/*                   singular vectors) s(info+1),s(info+2),...,s(m) */
/*                   are correct (here m=min(n,p)).  thus if */
/*                   info.eq.0, all the singular values and their */
/*                   vectors are correct.  in any event, the matrix */
/*                   b = trans(u)*x*v is the bidiagonal matrix */
/*                   with the elements of s on its diagonal and the */
/*                   elements of e on its super-diagonal (trans(u) */
/*                   is the transpose of u).  thus the singular */
/*                   values of x and b are the same. */

/*     linpack. this version dated 03/19/79 . */
/*              correction to shift calculation made 2/85. */
/*     g.w. stewart, university of maryland, argonne national lab. */

/*     ***** uses the following functions and subprograms. */

/*     external srot */
/*     blas saxpy,sdot,sscal,sswap,snrm2,srotg */
/*     fortran abs,amax1,max0,min0,mod,sqrt */

/*     internal variables */

/*<    >*/
/*<       real sdot,t,r >*/
/*<    >*/
/*<       logical wantu,wantv >*/


/*     set the maximum number of iterations. */

/*<       maxit = 1000 >*/
    /* Parameter adjustments */
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --s;
    --e;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    --work;

    /* Function Body */
    maxit = 1000;

/*     determine what is to be computed. */

/*<       wantu = .false. >*/
    wantu = FALSE_;
/*<       wantv = .false. >*/
    wantv = FALSE_;
/*<       jobu = mod(job,100)/10 >*/
    jobu = *job % 100 / 10;
/*<       ncu = n >*/
    ncu = *n;
/*<       if (jobu .gt. 1) ncu = min0(n,p) >*/
    if (jobu > 1) {
        ncu = min(*n,*p);
    }
/*<       if (jobu .ne. 0) wantu = .true. >*/
    if (jobu != 0) {
        wantu = TRUE_;
    }
/*<       if (mod(job,10) .ne. 0) wantv = .true. >*/
    if (*job % 10 != 0) {
        wantv = TRUE_;
    }

/*     reduce x to bidiagonal form, storing the diagonal elements */
/*     in s and the super-diagonal elements in e. */

/*<       info = 0 >*/
    *info = 0;
/*<       nct = min0(n-1,p) >*/
/* Computing MIN */
    i__1 = *n - 1;
    nct = min(i__1,*p);
/*<       nrt = max0(0,min0(p-2,n)) >*/
/* Computing MAX */
/* Computing MIN */
    i__3 = *p - 2;
    i__1 = 0, i__2 = min(i__3,*n);
    nrt = max(i__1,i__2);
/*<       lu = max0(nct,nrt) >*/
    lu = max(nct,nrt);
/*<       if (lu .lt. 1) go to 170 >*/
    if (lu < 1) {
        goto L170;
    }
/*<       do 160 l = 1, lu >*/
    i__1 = lu;
    for (l = 1; l <= i__1; ++l) {
/*<          lp1 = l + 1 >*/
        lp1 = l + 1;
/*<          if (l .gt. nct) go to 20 >*/
        if (l > nct) {
            goto L20;
        }

/*           compute the transformation for the l-th column and */
/*           place the l-th diagonal in s(l). */

/*<             s(l) = snrm2(n-l+1,x(l,l),1) >*/
        i__2 = *n - l + 1;
        s[l] = snrm2_(&i__2, &x[l + l * x_dim1], &c__1);
/*<             if (s(l) .eq. 0.0e0) go to 10 >*/
        if (s[l] == (float)0.) {
            goto L10;
        }
/*<                if (x(l,l) .ne. 0.0e0) s(l) = sign(s(l),x(l,l)) >*/
        if (x[l + l * x_dim1] != (float)0.) {
            s[l] = r_sign(&s[l], &x[l + l * x_dim1]);
        }
/*<                call sscal(n-l+1,1.0e0/s(l),x(l,l),1) >*/
        i__2 = *n - l + 1;
        r__1 = (float)1. / s[l];
        sscal_(&i__2, &r__1, &x[l + l * x_dim1], &c__1);
/*<                x(l,l) = 1.0e0 + x(l,l) >*/
        x[l + l * x_dim1] += (float)1.;
/*<    10       continue >*/
L10:
/*<             s(l) = -s(l) >*/
        s[l] = -s[l];
/*<    20    continue >*/
L20:
/*<          if (p .lt. lp1) go to 50 >*/
        if (*p < lp1) {
            goto L50;
        }
/*<          do 40 j = lp1, p >*/
        i__2 = *p;
        for (j = lp1; j <= i__2; ++j) {
/*<             if (l .gt. nct) go to 30 >*/
            if (l > nct) {
                goto L30;
            }
/*<             if (s(l) .eq. 0.0e0) go to 30 >*/
            if (s[l] == (float)0.) {
                goto L30;
            }

/*              apply the transformation. */

/*<                t = -sdot(n-l+1,x(l,l),1,x(l,j),1)/x(l,l) >*/
            i__3 = *n - l + 1;
            t = -sdot_(&i__3, &x[l + l * x_dim1], &c__1, &x[l + j * x_dim1], &
                    c__1) / x[l + l * x_dim1];
/*<                call saxpy(n-l+1,t,x(l,l),1,x(l,j),1) >*/
            i__3 = *n - l + 1;
            saxpy_(&i__3, &t, &x[l + l * x_dim1], &c__1, &x[l + j * x_dim1], &
                    c__1);
/*<    30       continue >*/
L30:

/*           place the l-th row of x into  e for the */
/*           subsequent calculation of the row transformation. */

/*<             e(j) = x(l,j) >*/
            e[j] = x[l + j * x_dim1];
/*<    40    continue >*/
/* L40: */
        }
/*<    50    continue >*/
L50:
/*<          if (.not.wantu .or. l .gt. nct) go to 70 >*/
        if (! wantu || l > nct) {
            goto L70;
        }

/*           place the transformation in u for subsequent back */
/*           multiplication. */

/*<             do 60 i = l, n >*/
        i__2 = *n;
        for (i__ = l; i__ <= i__2; ++i__) {
/*<                u(i,l) = x(i,l) >*/
            u[i__ + l * u_dim1] = x[i__ + l * x_dim1];
/*<    60       continue >*/
/* L60: */
        }
/*<    70    continue >*/
L70:
/*<          if (l .gt. nrt) go to 150 >*/
        if (l > nrt) {
            goto L150;
        }

/*           compute the l-th row transformation and place the */
/*           l-th super-diagonal in e(l). */

/*<             e(l) = snrm2(p-l,e(lp1),1) >*/
        i__2 = *p - l;
        e[l] = snrm2_(&i__2, &e[lp1], &c__1);
/*<             if (e(l) .eq. 0.0e0) go to 80 >*/
        if (e[l] == (float)0.) {
            goto L80;
        }
/*<                if (e(lp1) .ne. 0.0e0) e(l) = sign(e(l),e(lp1)) >*/
        if (e[lp1] != (float)0.) {
            e[l] = r_sign(&e[l], &e[lp1]);
        }
/*<                call sscal(p-l,1.0e0/e(l),e(lp1),1) >*/
        i__2 = *p - l;
        r__1 = (float)1. / e[l];
        sscal_(&i__2, &r__1, &e[lp1], &c__1);
/*<                e(lp1) = 1.0e0 + e(lp1) >*/
        e[lp1] += (float)1.;
/*<    80       continue >*/
L80:
/*<             e(l) = -e(l) >*/
        e[l] = -e[l];
/*<             if (lp1 .gt. n .or. e(l) .eq. 0.0e0) go to 120 >*/
        if (lp1 > *n || e[l] == (float)0.) {
            goto L120;
        }

/*              apply the transformation. */

/*<                do 90 i = lp1, n >*/
        i__2 = *n;
        for (i__ = lp1; i__ <= i__2; ++i__) {
/*<                   work(i) = 0.0e0 >*/
            work[i__] = (float)0.;
/*<    90          continue >*/
/* L90: */
        }
/*<                do 100 j = lp1, p >*/
        i__2 = *p;
        for (j = lp1; j <= i__2; ++j) {
/*<                   call saxpy(n-l,e(j),x(lp1,j),1,work(lp1),1) >*/
            i__3 = *n - l;
            saxpy_(&i__3, &e[j], &x[lp1 + j * x_dim1], &c__1, &work[lp1], &
                    c__1);
/*<   100          continue >*/
/* L100: */
        }
/*<                do 110 j = lp1, p >*/
        i__2 = *p;
        for (j = lp1; j <= i__2; ++j) {
/*<                   call saxpy(n-l,-e(j)/e(lp1),work(lp1),1,x(lp1,j),1) >*/
            i__3 = *n - l;
            r__1 = -e[j] / e[lp1];
            saxpy_(&i__3, &r__1, &work[lp1], &c__1, &x[lp1 + j * x_dim1], &
                    c__1);
/*<   110          continue >*/
/* L110: */
        }
/*<   120       continue >*/
L120:
/*<             if (.not.wantv) go to 140 >*/
        if (! wantv) {
            goto L140;
        }

/*              place the transformation in v for subsequent */
/*              back multiplication. */

/*<                do 130 i = lp1, p >*/
        i__2 = *p;
        for (i__ = lp1; i__ <= i__2; ++i__) {
/*<                   v(i,l) = e(i) >*/
            v[i__ + l * v_dim1] = e[i__];
/*<   130          continue >*/
/* L130: */
        }
/*<   140       continue >*/
L140:
/*<   150    continue >*/
L150:
/*<   160 continue >*/
/* L160: */
        ;
    }
/*<   170 continue >*/
L170:

/*     set up the final bidiagonal matrix or order m. */

/*<       m = min0(p,n+1) >*/
/* Computing MIN */
    i__1 = *p, i__2 = *n + 1;
    m = min(i__1,i__2);
/*<       nctp1 = nct + 1 >*/
    nctp1 = nct + 1;
/*<       nrtp1 = nrt + 1 >*/
    nrtp1 = nrt + 1;
/*<       if (nct .lt. p) s(nctp1) = x(nctp1,nctp1) >*/
    if (nct < *p) {
        s[nctp1] = x[nctp1 + nctp1 * x_dim1];
    }
/*<       if (n .lt. m) s(m) = 0.0e0 >*/
    if (*n < m) {
        s[m] = (float)0.;
    }
/*<       if (nrtp1 .lt. m) e(nrtp1) = x(nrtp1,m) >*/
    if (nrtp1 < m) {
        e[nrtp1] = x[nrtp1 + m * x_dim1];
    }
/*<       e(m) = 0.0e0 >*/
    e[m] = (float)0.;

/*     if required, generate u. */

/*<       if (.not.wantu) go to 300 >*/
    if (! wantu) {
        goto L300;
    }
/*<          if (ncu .lt. nctp1) go to 200 >*/
    if (ncu < nctp1) {
        goto L200;
    }
/*<          do 190 j = nctp1, ncu >*/
    i__1 = ncu;
    for (j = nctp1; j <= i__1; ++j) {
/*<             do 180 i = 1, n >*/
        i__2 = *n;
        for (i__ = 1; i__ <= i__2; ++i__) {
/*<                u(i,j) = 0.0e0 >*/
            u[i__ + j * u_dim1] = (float)0.;
/*<   180       continue >*/
/* L180: */
        }
/*<             u(j,j) = 1.0e0 >*/
        u[j + j * u_dim1] = (float)1.;
/*<   190    continue >*/
/* L190: */
    }
/*<   200    continue >*/
L200:
/*<          if (nct .lt. 1) go to 290 >*/
    if (nct < 1) {
        goto L290;
    }
/*<          do 280 ll = 1, nct >*/
    i__1 = nct;
    for (ll = 1; ll <= i__1; ++ll) {
/*<             l = nct - ll + 1 >*/
        l = nct - ll + 1;
/*<             if (s(l) .eq. 0.0e0) go to 250 >*/
        if (s[l] == (float)0.) {
            goto L250;
        }
/*<                lp1 = l + 1 >*/
        lp1 = l + 1;
/*<                if (ncu .lt. lp1) go to 220 >*/
        if (ncu < lp1) {
            goto L220;
        }
/*<                do 210 j = lp1, ncu >*/
        i__2 = ncu;
        for (j = lp1; j <= i__2; ++j) {
/*<                   t = -sdot(n-l+1,u(l,l),1,u(l,j),1)/u(l,l) >*/
            i__3 = *n - l + 1;
            t = -sdot_(&i__3, &u[l + l * u_dim1], &c__1, &u[l + j * u_dim1], &
                    c__1) / u[l + l * u_dim1];
/*<                   call saxpy(n-l+1,t,u(l,l),1,u(l,j),1) >*/
            i__3 = *n - l + 1;
            saxpy_(&i__3, &t, &u[l + l * u_dim1], &c__1, &u[l + j * u_dim1], &
                    c__1);
/*<   210          continue >*/
/* L210: */
        }
/*<   220          continue >*/
L220:
/*<                call sscal(n-l+1,-1.0e0,u(l,l),1) >*/
        i__2 = *n - l + 1;
        sscal_(&i__2, &c_b44, &u[l + l * u_dim1], &c__1);
/*<                u(l,l) = 1.0e0 + u(l,l) >*/
        u[l + l * u_dim1] += (float)1.;
/*<                lm1 = l - 1 >*/
        lm1 = l - 1;
/*<                if (lm1 .lt. 1) go to 240 >*/
        if (lm1 < 1) {
            goto L240;
        }
/*<                do 230 i = 1, lm1 >*/
        i__2 = lm1;
        for (i__ = 1; i__ <= i__2; ++i__) {
/*<                   u(i,l) = 0.0e0 >*/
            u[i__ + l * u_dim1] = (float)0.;
/*<   230          continue >*/
/* L230: */
        }
/*<   240          continue >*/
L240:
/*<             go to 270 >*/
        goto L270;
/*<   250       continue >*/
L250:
/*<                do 260 i = 1, n >*/
        i__2 = *n;
        for (i__ = 1; i__ <= i__2; ++i__) {
/*<                   u(i,l) = 0.0e0 >*/
            u[i__ + l * u_dim1] = (float)0.;
/*<   260          continue >*/
/* L260: */
        }
/*<                u(l,l) = 1.0e0 >*/
        u[l + l * u_dim1] = (float)1.;
/*<   270       continue >*/
L270:
/*<   280    continue >*/
/* L280: */
        ;
    }
/*<   290    continue >*/
L290:
/*<   300 continue >*/
L300:

/*     if it is required, generate v. */

/*<       if (.not.wantv) go to 350 >*/
    if (! wantv) {
        goto L350;
    }
/*<          do 340 ll = 1, p >*/
    i__1 = *p;
    for (ll = 1; ll <= i__1; ++ll) {
/*<             l = p - ll + 1 >*/
        l = *p - ll + 1;
/*<             lp1 = l + 1 >*/
        lp1 = l + 1;
/*<             if (l .gt. nrt) go to 320 >*/
        if (l > nrt) {
            goto L320;
        }
/*<             if (e(l) .eq. 0.0e0) go to 320 >*/
        if (e[l] == (float)0.) {
            goto L320;
        }
/*<                do 310 j = lp1, p >*/
        i__2 = *p;
        for (j = lp1; j <= i__2; ++j) {
/*<                   t = -sdot(p-l,v(lp1,l),1,v(lp1,j),1)/v(lp1,l) >*/
            i__3 = *p - l;
            t = -sdot_(&i__3, &v[lp1 + l * v_dim1], &c__1, &v[lp1 + j * 
                    v_dim1], &c__1) / v[lp1 + l * v_dim1];
/*<                   call saxpy(p-l,t,v(lp1,l),1,v(lp1,j),1) >*/
            i__3 = *p - l;
            saxpy_(&i__3, &t, &v[lp1 + l * v_dim1], &c__1, &v[lp1 + j * 
                    v_dim1], &c__1);
/*<   310          continue >*/
/* L310: */
        }
/*<   320       continue >*/
L320:
/*<             do 330 i = 1, p >*/
        i__2 = *p;
        for (i__ = 1; i__ <= i__2; ++i__) {
/*<                v(i,l) = 0.0e0 >*/
            v[i__ + l * v_dim1] = (float)0.;
/*<   330       continue >*/
/* L330: */
        }
/*<             v(l,l) = 1.0e0 >*/
        v[l + l * v_dim1] = (float)1.;
/*<   340    continue >*/
/* L340: */
    }
/*<   350 continue >*/
L350:

/*     main iteration loop for the singular values. */

/*<       mm = m >*/
    mm = m;
/*<       iter = 0 >*/
    iter = 0;
/*<   360 continue >*/
L360:

/*        quit if all the singular values have been found. */

/*     ...exit */
/*<          if (m .eq. 0) go to 620 >*/
    if (m == 0) {
        goto L620;
    }

/*        if too many iterations have been performed, set */
/*        flag and return. */

/*<          if (iter .lt. maxit) go to 370 >*/
    if (iter < maxit) {
        goto L370;
    }
/*<             info = m >*/
    *info = m;
/*     ......exit */
/*<             go to 620 >*/
    goto L620;
/*<   370    continue >*/
L370:

/*        this section of the program inspects for */
/*        negligible elements in the s and e arrays.  on */
/*        completion the variables kase and l are set as follows. */

/*           kase = 1     if s(m) and e(l-1) are negligible and l.lt.m */
/*           kase = 2     if s(l) is negligible and l.lt.m */
/*           kase = 3     if e(l-1) is negligible, l.lt.m, and */
/*                        s(l), ..., s(m) are not negligible (qr step). */
/*           kase = 4     if e(m-1) is negligible (convergence). */

/*<          do 390 ll = 1, m >*/
    i__1 = m;
    for (ll = 1; ll <= i__1; ++ll) {
/*<             l = m - ll >*/
        l = m - ll;
/*        ...exit */
/*<             if (l .eq. 0) go to 400 >*/
        if (l == 0) {
            goto L400;
        }
/*<             test = abs(s(l)) + abs(s(l+1)) >*/
        test = (r__1 = s[l], dabs(r__1)) + (r__2 = s[l + 1], dabs(r__2));
/*<             ztest = test + abs(e(l)) >*/
        ztest = test + (r__1 = e[l], dabs(r__1));
/*<             if (ztest .ne. test) go to 380 >*/
        if (ztest != test) {
            goto L380;
        }
/*<                e(l) = 0.0e0 >*/
        e[l] = (float)0.;
/*        ......exit */
/*<                go to 400 >*/
        goto L400;
/*<   380       continue >*/
L380:
/*<   390    continue >*/
/* L390: */
        ;
    }
/*<   400    continue >*/
L400:
/*<          if (l .ne. m - 1) go to 410 >*/
    if (l != m - 1) {
        goto L410;
    }
/*<             kase = 4 >*/
    kase = 4;
/*<          go to 480 >*/
    goto L480;
/*<   410    continue >*/
L410:
/*<             lp1 = l + 1 >*/
    lp1 = l + 1;
/*<             mp1 = m + 1 >*/
    mp1 = m + 1;
/*<             do 430 lls = lp1, mp1 >*/
    i__1 = mp1;
    for (lls = lp1; lls <= i__1; ++lls) {
/*<                ls = m - lls + lp1 >*/
        ls = m - lls + lp1;
/*           ...exit */
/*<                if (ls .eq. l) go to 440 >*/
        if (ls == l) {
            goto L440;
        }
/*<                test = 0.0e0 >*/
        test = (float)0.;
/*<                if (ls .ne. m) test = test + abs(e(ls)) >*/
        if (ls != m) {
            test += (r__1 = e[ls], dabs(r__1));
        }
/*<                if (ls .ne. l + 1) test = test + abs(e(ls-1)) >*/
        if (ls != l + 1) {
            test += (r__1 = e[ls - 1], dabs(r__1));
        }
/*<                ztest = test + abs(s(ls)) >*/
        ztest = test + (r__1 = s[ls], dabs(r__1));
/*<                if (ztest .ne. test) go to 420 >*/
        if (ztest != test) {
            goto L420;
        }
/*<                   s(ls) = 0.0e0 >*/
        s[ls] = (float)0.;
/*           ......exit */
/*<                   go to 440 >*/
        goto L440;
/*<   420          continue >*/
L420:
/*<   430       continue >*/
/* L430: */
        ;
    }
/*<   440       continue >*/
L440:
/*<             if (ls .ne. l) go to 450 >*/
    if (ls != l) {
        goto L450;
    }
/*<                kase = 3 >*/
    kase = 3;
/*<             go to 470 >*/
    goto L470;
/*<   450       continue >*/
L450:
/*<             if (ls .ne. m) go to 460 >*/
    if (ls != m) {
        goto L460;
    }
/*<                kase = 1 >*/
    kase = 1;
/*<             go to 470 >*/
    goto L470;
/*<   460       continue >*/
L460:
/*<                kase = 2 >*/
    kase = 2;
/*<                l = ls >*/
    l = ls;
/*<   470       continue >*/
L470:
/*<   480    continue >*/
L480:
/*<          l = l + 1 >*/
    ++l;

/*        perform the task indicated by kase. */

/*<          go to (490,520,540,570), kase >*/
    switch (kase) {
        case 1:  goto L490;
        case 2:  goto L520;
        case 3:  goto L540;
        case 4:  goto L570;
    }

/*        deflate negligible s(m). */

/*<   490    continue >*/
L490:
/*<             mm1 = m - 1 >*/
    mm1 = m - 1;
/*<             f = e(m-1) >*/
    f = e[m - 1];
/*<             e(m-1) = 0.0e0 >*/
    e[m - 1] = (float)0.;
/*<             do 510 kk = l, mm1 >*/
    i__1 = mm1;
    for (kk = l; kk <= i__1; ++kk) {
/*<                k = mm1 - kk + l >*/
        k = mm1 - kk + l;
/*<                t1 = s(k) >*/
        t1 = s[k];
/*<                call srotg(t1,f,cs,sn) >*/
        srotg_(&t1, &f, &cs, &sn);
/*<                s(k) = t1 >*/
        s[k] = t1;
/*<                if (k .eq. l) go to 500 >*/
        if (k == l) {
            goto L500;
        }
/*<                   f = -sn*e(k-1) >*/
        f = -sn * e[k - 1];
/*<                   e(k-1) = cs*e(k-1) >*/
        e[k - 1] = cs * e[k - 1];
/*<   500          continue >*/
L500:
/*<                if (wantv) call srot(p,v(1,k),1,v(1,m),1,cs,sn) >*/
        if (wantv) {
            srot_(p, &v[k * v_dim1 + 1], &c__1, &v[m * v_dim1 + 1], &c__1, &
                    cs, &sn);
        }
/*<   510       continue >*/
/* L510: */
    }
/*<          go to 610 >*/
    goto L610;

/*        split at negligible s(l). */

/*<   520    continue >*/
L520:
/*<             f = e(l-1) >*/
    f = e[l - 1];
/*<             e(l-1) = 0.0e0 >*/
    e[l - 1] = (float)0.;
/*<             do 530 k = l, m >*/
    i__1 = m;
    for (k = l; k <= i__1; ++k) {
/*<                t1 = s(k) >*/
        t1 = s[k];
/*<                call srotg(t1,f,cs,sn) >*/
        srotg_(&t1, &f, &cs, &sn);
/*<                s(k) = t1 >*/
        s[k] = t1;
/*<                f = -sn*e(k) >*/
        f = -sn * e[k];
/*<                e(k) = cs*e(k) >*/
        e[k] = cs * e[k];
/*<                if (wantu) call srot(n,u(1,k),1,u(1,l-1),1,cs,sn) >*/
        if (wantu) {
            srot_(n, &u[k * u_dim1 + 1], &c__1, &u[(l - 1) * u_dim1 + 1], &
                    c__1, &cs, &sn);
        }
/*<   530       continue >*/
/* L530: */
    }
/*<          go to 610 >*/
    goto L610;

/*        perform one qr step. */

/*<   540    continue >*/
L540:

/*           calculate the shift. */

/*<    >*/
/* Computing MAX */
    r__6 = (r__1 = s[m], dabs(r__1)), r__7 = (r__2 = s[m - 1], dabs(r__2)), 
            r__6 = max(r__6,r__7), r__7 = (r__3 = e[m - 1], dabs(r__3)), r__6 
            = max(r__6,r__7), r__7 = (r__4 = s[l], dabs(r__4)), r__6 = max(
            r__6,r__7), r__7 = (r__5 = e[l], dabs(r__5));
    scale = dmax(r__6,r__7);
/*<             sm = s(m)/scale >*/
    sm = s[m] / scale;
/*<             smm1 = s(m-1)/scale >*/
    smm1 = s[m - 1] / scale;
/*<             emm1 = e(m-1)/scale >*/
    emm1 = e[m - 1] / scale;
/*<             sl = s(l)/scale >*/
    sl = s[l] / scale;
/*<             el = e(l)/scale >*/
    el = e[l] / scale;
/*<             b = ((smm1 + sm)*(smm1 - sm) + emm1**2)/2.0e0 >*/
/* Computing 2nd power */
    r__1 = emm1;
    b = ((smm1 + sm) * (smm1 - sm) + r__1 * r__1) / (float)2.;
/*<             c = (sm*emm1)**2 >*/
/* Computing 2nd power */
    r__1 = sm * emm1;
    c__ = r__1 * r__1;
/*<             shift = 0.0e0 >*/
    shift = (float)0.;
/*<             if (b .eq. 0.0e0 .and. c .eq. 0.0e0) go to 550 >*/
    if (b == (float)0. && c__ == (float)0.) {
        goto L550;
    }
/*<                shift = sqrt(b**2+c) >*/
/* Computing 2nd power */
    r__1 = b;
    shift = sqrt(r__1 * r__1 + c__);
/*<                if (b .lt. 0.0e0) shift = -shift >*/
    if (b < (float)0.) {
        shift = -shift;
    }
/*<                shift = c/(b + shift) >*/
    shift = c__ / (b + shift);
/*<   550       continue >*/
L550:
/*<             f = (sl + sm)*(sl - sm) + shift >*/
    f = (sl + sm) * (sl - sm) + shift;
/*<             g = sl*el >*/
    g = sl * el;

/*           chase zeros. */

/*<             mm1 = m - 1 >*/
    mm1 = m - 1;
/*<             do 560 k = l, mm1 >*/
    i__1 = mm1;
    for (k = l; k <= i__1; ++k) {
/*<                call srotg(f,g,cs,sn) >*/
        srotg_(&f, &g, &cs, &sn);
/*<                if (k .ne. l) e(k-1) = f >*/
        if (k != l) {
            e[k - 1] = f;
        }
/*<                f = cs*s(k) + sn*e(k) >*/
        f = cs * s[k] + sn * e[k];
/*<                e(k) = cs*e(k) - sn*s(k) >*/
        e[k] = cs * e[k] - sn * s[k];
/*<                g = sn*s(k+1) >*/
        g = sn * s[k + 1];
/*<                s(k+1) = cs*s(k+1) >*/
        s[k + 1] = cs * s[k + 1];
/*<                if (wantv) call srot(p,v(1,k),1,v(1,k+1),1,cs,sn) >*/
        if (wantv) {
            srot_(p, &v[k * v_dim1 + 1], &c__1, &v[(k + 1) * v_dim1 + 1], &
                    c__1, &cs, &sn);
        }
/*<                call srotg(f,g,cs,sn) >*/
        srotg_(&f, &g, &cs, &sn);
/*<                s(k) = f >*/
        s[k] = f;
/*<                f = cs*e(k) + sn*s(k+1) >*/
        f = cs * e[k] + sn * s[k + 1];
/*<                s(k+1) = -sn*e(k) + cs*s(k+1) >*/
        s[k + 1] = -sn * e[k] + cs * s[k + 1];
/*<                g = sn*e(k+1) >*/
        g = sn * e[k + 1];
/*<                e(k+1) = cs*e(k+1) >*/
        e[k + 1] = cs * e[k + 1];
/*<    >*/
        if (wantu && k < *n) {
            srot_(n, &u[k * u_dim1 + 1], &c__1, &u[(k + 1) * u_dim1 + 1], &
                    c__1, &cs, &sn);
        }
/*<   560       continue >*/
/* L560: */
    }
/*<             e(m-1) = f >*/
    e[m - 1] = f;
/*<             iter = iter + 1 >*/
    ++iter;
/*<          go to 610 >*/
    goto L610;

/*        convergence. */

/*<   570    continue >*/
L570:

/*           make the singular value  positive. */

/*<             if (s(l) .ge. 0.0e0) go to 580 >*/
    if (s[l] >= (float)0.) {
        goto L580;
    }
/*<                s(l) = -s(l) >*/
    s[l] = -s[l];
/*<                if (wantv) call sscal(p,-1.0e0,v(1,l),1) >*/
    if (wantv) {
        sscal_(p, &c_b44, &v[l * v_dim1 + 1], &c__1);
    }
/*<   580       continue >*/
L580:

/*           order the singular value. */

/*<   590       if (l .eq. mm) go to 600 >*/
L590:
    if (l == mm) {
        goto L600;
    }
/*           ...exit */
/*<                if (s(l) .ge. s(l+1)) go to 600 >*/
    if (s[l] >= s[l + 1]) {
        goto L600;
    }
/*<                t = s(l) >*/
    t = s[l];
/*<                s(l) = s(l+1) >*/
    s[l] = s[l + 1];
/*<                s(l+1) = t >*/
    s[l + 1] = t;
/*<    >*/
    if (wantv && l < *p) {
        sswap_(p, &v[l * v_dim1 + 1], &c__1, &v[(l + 1) * v_dim1 + 1], &c__1);
    }
/*<    >*/
    if (wantu && l < *n) {
        sswap_(n, &u[l * u_dim1 + 1], &c__1, &u[(l + 1) * u_dim1 + 1], &c__1);
    }
/*<                l = l + 1 >*/
    ++l;
/*<             go to 590 >*/
    goto L590;
/*<   600       continue >*/
L600:
/*<             iter = 0 >*/
    iter = 0;
/*<             m = m - 1 >*/
    --m;
/*<   610    continue >*/
L610:
/*<       go to 360 >*/
    goto L360;
/*<   620 continue >*/
L620:
/*<       return >*/
    return 0;
/*<       end >*/
} /* ssvdc_ */

#ifdef __cplusplus
        }
#endif