File: simpson.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (136 lines) | stat: -rw-r--r-- 4,110 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/* mathews/simpson.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/*     NUMERICAL METHODS: FORTRAN Programs, (c) John H. Mathews 1994 */
/*     To accompany the text: */
/*     NUMERICAL METHODS for Mathematics, Science and Engineering, 2nd Ed, 1992 */
/*     Prentice Hall, Englewood Cliffs, New Jersey, 07632, U.S.A. */
/*     This free software is complements of the author. */

/*     Algorithm 7.2 (Composite Simpson Rule). */
/*     Section 7.2, Composite Trapezoidal and Simpson's Rule, Page 365 */

/*     comment added by Kongbin Kang */
/*     F: integrand function */
/*     A: lower integration limit */
/*     B: higher integration limit */
/*     M: number of intervals. Notice, the subintervals used is 2M */
/*     Srule: output parameter to store simpson rule result */
/*<       SUBROUTINE SIMPRU(F,A,B,M,Srule) >*/
/* Subroutine */ int simpru_(doublereal (*f)(doublereal*),
                             doublereal *a, doublereal *b, integer *m,
                             doublereal *srule)
{
    /* System generated locals */
    integer i__1;

    /* Local variables */
    doublereal h__;
    integer k;
    doublereal x, sum, sumodd, sumeven;

/*<       INTEGER K,M >*/
/*<       DOUBLE PRECISION A,B,H,Sum,SumEven,SumOdd,Srule,X >*/
/*<       EXTERNAL F >*/
/*<       H=(B-A)/(2*M) >*/
    h__ = (*b - *a) / (*m << 1);
/*<       SumEven=0 >*/
    sumeven = 0.;
/*<       DO K=1,(M-1) >*/
    i__1 = *m - 1;
    for (k = 1; k <= i__1; ++k) {
/*<         X=A+H*2*K >*/
        x = *a + h__ * 2 * k;
/*<         SumEven=SumEven+F(X) >*/
        sumeven += (*f)(&x);
/*<       ENDDO >*/
    }
/*<       SumOdd=0 >*/
    sumodd = 0.;
/*<       DO K=1,M >*/
    i__1 = *m;
    for (k = 1; k <= i__1; ++k) {
/*<         X=A+H*(2*K-1) >*/
        x = *a + h__ * ((k << 1) - 1);
/*<         SumOdd=SumOdd+F(X) >*/
        sumodd += (*f)(&x);
/*<       ENDDO >*/
    }
/*<       Sum=H*(F(A)+F(B)+2*SumEven+4*SumOdd)/3 >*/
    sum = h__ * ((*f)(a) + (*f)(b) + sumeven * 2 + sumodd * 4) / 3;
/*<       Srule=Sum >*/
    *srule = sum;
/*<       RETURN >*/
    return 0;
/*<       END >*/
} /* simpru_ */

/*<       SUBROUTINE XSIMPRU(F,A,B,M,Srule) >*/
/* Subroutine */ int xsimpru_(doublereal (*f)(doublereal*),
                              doublereal *a, doublereal *b, integer *
                              m, doublereal *srule)
{
    /* System generated locals */
    integer i__1;

    /* Local variables */
    doublereal h__;
    integer k;
    doublereal x, sum, sumodd, sumeven;

/*     This subroutine uses labeled DO loop(s). */
/*<       INTEGER K,M >*/
/*<       DOUBLE PRECISION A,B,H,Sum,SumEven,SumOdd,Srule,X >*/
/*<       EXTERNAL F >*/
/*<       H=(B-A)/(2*M) >*/
    h__ = (*b - *a) / (*m << 1);
/*<       SumEven=0 >*/
    sumeven = 0.;
/*<       DO 10 K=1,(M-1) >*/
    i__1 = *m - 1;
    for (k = 1; k <= i__1; ++k) {
/*<         X=A+H*2*K >*/
        x = *a + h__ * 2 * k;
/*<         SumEven=SumEven+F(X) >*/
        sumeven += (*f)(&x);
/*< 10    CONTINUE >*/
/* L10: */
    }
/*<       SumOdd=0 >*/
    sumodd = 0.;
/*<       DO 20 K=1,M >*/
    i__1 = *m;
    for (k = 1; k <= i__1; ++k) {
/*<         X=A+H*(2*K-1) >*/
        x = *a + h__ * ((k << 1) - 1);
/*<         SumOdd=SumOdd+F(X) >*/
        sumodd += (*f)(&x);
/*< 20    CONTINUE >*/
/* L20: */
    }
/*<       Sum=H*(F(A)+F(B)+2*SumEven+4*SumOdd)/3 >*/
    sum = h__ * ((*f)(a) + (*f)(b) + sumeven * 2 + sumodd * 4) / 3;
/*<       Srule=Sum >*/
    *srule = sum;
/*<       RETURN >*/
    return 0;
/*<       END >*/
} /* xsimpru_ */

#ifdef __cplusplus
        }
#endif