1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
/* mathews/simpson.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* NUMERICAL METHODS: FORTRAN Programs, (c) John H. Mathews 1994 */
/* To accompany the text: */
/* NUMERICAL METHODS for Mathematics, Science and Engineering, 2nd Ed, 1992 */
/* Prentice Hall, Englewood Cliffs, New Jersey, 07632, U.S.A. */
/* This free software is complements of the author. */
/* Algorithm 7.2 (Composite Simpson Rule). */
/* Section 7.2, Composite Trapezoidal and Simpson's Rule, Page 365 */
/* comment added by Kongbin Kang */
/* F: integrand function */
/* A: lower integration limit */
/* B: higher integration limit */
/* M: number of intervals. Notice, the subintervals used is 2M */
/* Srule: output parameter to store simpson rule result */
/*< SUBROUTINE SIMPRU(F,A,B,M,Srule) >*/
/* Subroutine */ int simpru_(doublereal (*f)(doublereal*),
doublereal *a, doublereal *b, integer *m,
doublereal *srule)
{
/* System generated locals */
integer i__1;
/* Local variables */
doublereal h__;
integer k;
doublereal x, sum, sumodd, sumeven;
/*< INTEGER K,M >*/
/*< DOUBLE PRECISION A,B,H,Sum,SumEven,SumOdd,Srule,X >*/
/*< EXTERNAL F >*/
/*< H=(B-A)/(2*M) >*/
h__ = (*b - *a) / (*m << 1);
/*< SumEven=0 >*/
sumeven = 0.;
/*< DO K=1,(M-1) >*/
i__1 = *m - 1;
for (k = 1; k <= i__1; ++k) {
/*< X=A+H*2*K >*/
x = *a + h__ * 2 * k;
/*< SumEven=SumEven+F(X) >*/
sumeven += (*f)(&x);
/*< ENDDO >*/
}
/*< SumOdd=0 >*/
sumodd = 0.;
/*< DO K=1,M >*/
i__1 = *m;
for (k = 1; k <= i__1; ++k) {
/*< X=A+H*(2*K-1) >*/
x = *a + h__ * ((k << 1) - 1);
/*< SumOdd=SumOdd+F(X) >*/
sumodd += (*f)(&x);
/*< ENDDO >*/
}
/*< Sum=H*(F(A)+F(B)+2*SumEven+4*SumOdd)/3 >*/
sum = h__ * ((*f)(a) + (*f)(b) + sumeven * 2 + sumodd * 4) / 3;
/*< Srule=Sum >*/
*srule = sum;
/*< RETURN >*/
return 0;
/*< END >*/
} /* simpru_ */
/*< SUBROUTINE XSIMPRU(F,A,B,M,Srule) >*/
/* Subroutine */ int xsimpru_(doublereal (*f)(doublereal*),
doublereal *a, doublereal *b, integer *
m, doublereal *srule)
{
/* System generated locals */
integer i__1;
/* Local variables */
doublereal h__;
integer k;
doublereal x, sum, sumodd, sumeven;
/* This subroutine uses labeled DO loop(s). */
/*< INTEGER K,M >*/
/*< DOUBLE PRECISION A,B,H,Sum,SumEven,SumOdd,Srule,X >*/
/*< EXTERNAL F >*/
/*< H=(B-A)/(2*M) >*/
h__ = (*b - *a) / (*m << 1);
/*< SumEven=0 >*/
sumeven = 0.;
/*< DO 10 K=1,(M-1) >*/
i__1 = *m - 1;
for (k = 1; k <= i__1; ++k) {
/*< X=A+H*2*K >*/
x = *a + h__ * 2 * k;
/*< SumEven=SumEven+F(X) >*/
sumeven += (*f)(&x);
/*< 10 CONTINUE >*/
/* L10: */
}
/*< SumOdd=0 >*/
sumodd = 0.;
/*< DO 20 K=1,M >*/
i__1 = *m;
for (k = 1; k <= i__1; ++k) {
/*< X=A+H*(2*K-1) >*/
x = *a + h__ * ((k << 1) - 1);
/*< SumOdd=SumOdd+F(X) >*/
sumodd += (*f)(&x);
/*< 20 CONTINUE >*/
/* L20: */
}
/*< Sum=H*(F(A)+F(B)+2*SumEven+4*SumOdd)/3 >*/
sum = h__ * ((*f)(a) + (*f)(b) + sumeven * 2 + sumodd * 4) / 3;
/*< Srule=Sum >*/
*srule = sum;
/*< RETURN >*/
return 0;
/*< END >*/
} /* xsimpru_ */
#ifdef __cplusplus
}
#endif
|