File: enorm.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (228 lines) | stat: -rw-r--r-- 6,213 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/* minpack/enorm.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/*<       double precision function enorm(n,x) >*/
doublereal enorm_(integer *n, doublereal *x)
{
    /* Initialized data */

    static doublereal one = 1.; /* constant */
    static doublereal zero = 0.; /* constant */
    static doublereal rdwarf = 3.834e-20; /* constant */
    static doublereal rgiant = 1.304e19; /* constant */

    /* System generated locals */
    integer i__1;
    doublereal ret_val=0, d__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__;
    doublereal s1, s2, s3, xabs, x1max, x3max, agiant, floatn;

/*<       integer n >*/
/*<       double precision x(n) >*/
/*     ********** */

/*     function enorm */

/*     given an n-vector x, this function calculates the */
/*     euclidean norm of x. */

/*     the euclidean norm is computed by accumulating the sum of */
/*     squares in three different sums. the sums of squares for the */
/*     small and large components are scaled so that no overflows */
/*     occur. non-destructive underflows are permitted. underflows */
/*     and overflows do not occur in the computation of the unscaled */
/*     sum of squares for the intermediate components. */
/*     the definitions of small, intermediate and large components */
/*     depend on two constants, rdwarf and rgiant. the main */
/*     restrictions on these constants are that rdwarf**2 not */
/*     underflow and rgiant**2 not overflow. the constants */
/*     given here are suitable for every known computer. */

/*     the function statement is */

/*       double precision function enorm(n,x) */

/*     where */

/*       n is a positive integer input variable. */

/*       x is an input array of length n. */

/*     subprograms called */

/*       fortran-supplied ... dabs,dsqrt */

/*     argonne national laboratory. minpack project. march 1980. */
/*     burton s. garbow, kenneth e. hillstrom, jorge j. more */

/*     ********** */
/*<       integer i >*/
/*<    >*/
/*<       data one,zero,rdwarf,rgiant /1.0d0,0.0d0,3.834d-20,1.304d19/ >*/
    /* Parameter adjustments */
    --x;

    /* Function Body */
/*<       s1 = zero >*/
    s1 = zero;
/*<       s2 = zero >*/
    s2 = zero;
/*<       s3 = zero >*/
    s3 = zero;
/*<       x1max = zero >*/
    x1max = zero;
/*<       x3max = zero >*/
    x3max = zero;
/*<       floatn = n >*/
    floatn = (doublereal) (*n);
/*<       agiant = rgiant/floatn >*/
    agiant = rgiant / floatn;
/*<       do 90 i = 1, n >*/
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
/*<          xabs = dabs(x(i)) >*/
        xabs = (d__1 = x[i__], abs(d__1));
/*<          if (xabs .gt. rdwarf .and. xabs .lt. agiant) go to 70 >*/
        if (xabs > rdwarf && xabs < agiant) {
            goto L70;
        }
/*<             if (xabs .le. rdwarf) go to 30 >*/
        if (xabs <= rdwarf) {
            goto L30;
        }

/*              sum for large components. */

/*<                if (xabs .le. x1max) go to 10 >*/
        if (xabs <= x1max) {
            goto L10;
        }
/*<                   s1 = one + s1*(x1max/xabs)**2 >*/
/* Computing 2nd power */
        d__1 = x1max / xabs;
        s1 = one + s1 * (d__1 * d__1);
/*<                   x1max = xabs >*/
        x1max = xabs;
/*<                   go to 20 >*/
        goto L20;
/*<    10          continue >*/
L10:
/*<                   s1 = s1 + (xabs/x1max)**2 >*/
/* Computing 2nd power */
        d__1 = xabs / x1max;
        s1 += d__1 * d__1;
/*<    20          continue >*/
L20:
/*<                go to 60 >*/
        goto L60;
/*<    30       continue >*/
L30:

/*              sum for small components. */

/*<                if (xabs .le. x3max) go to 40 >*/
        if (xabs <= x3max) {
            goto L40;
        }
/*<                   s3 = one + s3*(x3max/xabs)**2 >*/
/* Computing 2nd power */
        d__1 = x3max / xabs;
        s3 = one + s3 * (d__1 * d__1);
/*<                   x3max = xabs >*/
        x3max = xabs;
/*<                   go to 50 >*/
        goto L50;
/*<    40          continue >*/
L40:
/*<                   if (xabs .ne. zero) s3 = s3 + (xabs/x3max)**2 >*/
        if (xabs != zero) {
/* Computing 2nd power */
            d__1 = xabs / x3max;
            s3 += d__1 * d__1;
        }
/*<    50          continue >*/
L50:
/*<    60       continue >*/
L60:
/*<             go to 80 >*/
        goto L80;
/*<    70    continue >*/
L70:

/*           sum for intermediate components. */

/*<             s2 = s2 + xabs**2 >*/
/* Computing 2nd power */
        d__1 = xabs;
        s2 += d__1 * d__1;
/*<    80    continue >*/
L80:
/*<    90    continue >*/
/* L90: */
        ;
    }

/*     calculation of norm. */

/*<       if (s1 .eq. zero) go to 100 >*/
    if (s1 == zero) {
        goto L100;
    }
/*<          enorm = x1max*dsqrt(s1+(s2/x1max)/x1max) >*/
    ret_val = x1max * sqrt(s1 + s2 / x1max / x1max);
/*<          go to 130 >*/
    goto L130;
/*<   100 continue >*/
L100:
/*<          if (s2 .eq. zero) go to 110 >*/
    if (s2 == zero) {
        goto L110;
    }
/*<    >*/
    if (s2 >= x3max) {
        ret_val = sqrt(s2 * (one + x3max / s2 * (x3max * s3)));
    }
/*<    >*/
    if (s2 < x3max) {
        ret_val = sqrt(x3max * (s2 / x3max + x3max * s3));
    }
/*<             go to 120 >*/
    goto L120;
/*<   110    continue >*/
L110:
/*<             enorm = x3max*dsqrt(s3) >*/
    ret_val = x3max * sqrt(s3);
/*<   120    continue >*/
L120:
/*<   130 continue >*/
L130:
/*<       return >*/
    return ret_val;

/*     last card of function enorm. */

/*<       end >*/
} /* enorm_ */

#ifdef __cplusplus
        }
#endif