1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
|
/* minpack/lmdif.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
static logical c_true = TRUE_;
/*< >*/
/* Subroutine */ int lmdif_(
void (*fcn)(v3p_netlib_integer*,
v3p_netlib_integer*,
v3p_netlib_doublereal*,
v3p_netlib_doublereal*,
v3p_netlib_integer*,
void*),
integer *m, integer *n, doublereal *x,
doublereal *fvec, doublereal *ftol, doublereal *xtol, doublereal *
gtol, integer *maxfev, doublereal *epsfcn, doublereal *diag, integer *
mode, doublereal *factor, integer *nprint, integer *info, integer *
nfev, doublereal *fjac, integer *ldfjac, integer *ipvt, doublereal *
qtf, doublereal *wa1, doublereal *wa2, doublereal *wa3, doublereal *
wa4, void* userdata)
{
/* Initialized data */
static doublereal one = 1.; /* constant */
static doublereal p1 = .1; /* constant */
static doublereal p5 = .5; /* constant */
static doublereal p25 = .25; /* constant */
static doublereal p75 = .75; /* constant */
static doublereal p0001 = 1e-4; /* constant */
static doublereal zero = 0.; /* constant */
/* System generated locals */
integer fjac_dim1, fjac_offset, i__1, i__2;
doublereal d__1, d__2, d__3;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j, l;
doublereal par, sum;
integer iter;
doublereal temp=0, temp1, temp2;
integer iflag;
doublereal delta;
extern /* Subroutine */ int qrfac_(integer *, integer *, doublereal *,
integer *, logical *, integer *, integer *, doublereal *,
doublereal *, doublereal *), lmpar_(integer *, doublereal *,
integer *, integer *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *);
doublereal ratio;
extern doublereal enorm_(integer *, doublereal *);
doublereal fnorm, gnorm;
extern /* Subroutine */ int fdjac2_(
void (*)(v3p_netlib_integer*,
v3p_netlib_integer*,
v3p_netlib_doublereal*,
v3p_netlib_doublereal*,
v3p_netlib_integer*,
void*),
integer *, integer *,
doublereal *, doublereal *, doublereal *, integer *, integer *,
doublereal *, doublereal *, void*);
doublereal pnorm, xnorm=0, fnorm1, actred, dirder, epsmch, prered;
extern doublereal dpmpar_(integer *);
/*< integer m,n,maxfev,mode,nprint,info,nfev,ldfjac >*/
/*< integer ipvt(n) >*/
/*< double precision ftol,xtol,gtol,epsfcn,factor >*/
/*< >*/
/*< external fcn >*/
/* ********** */
/* subroutine lmdif */
/* the purpose of lmdif is to minimize the sum of the squares of */
/* m nonlinear functions in n variables by a modification of */
/* the levenberg-marquardt algorithm. the user must provide a */
/* subroutine which calculates the functions. the jacobian is */
/* then calculated by a forward-difference approximation. */
/* the subroutine statement is */
/* subroutine lmdif(fcn,m,n,x,fvec,ftol,xtol,gtol,maxfev,epsfcn, */
/* diag,mode,factor,nprint,info,nfev,fjac, */
/* ldfjac,ipvt,qtf,wa1,wa2,wa3,wa4) */
/* where */
/* fcn is the name of the user-supplied subroutine which */
/* calculates the functions. fcn must be declared */
/* in an external statement in the user calling */
/* program, and should be written as follows. */
/* subroutine fcn(m,n,x,fvec,iflag) */
/* integer m,n,iflag */
/* double precision x(n),fvec(m) */
/* ---------- */
/* calculate the functions at x and */
/* return this vector in fvec. */
/* ---------- */
/* return */
/* end */
/* the value of iflag should not be changed by fcn unless */
/* the user wants to terminate execution of lmdif. */
/* in this case set iflag to a negative integer. */
/* m is a positive integer input variable set to the number */
/* of functions. */
/* n is a positive integer input variable set to the number */
/* of variables. n must not exceed m. */
/* x is an array of length n. on input x must contain */
/* an initial estimate of the solution vector. on output x */
/* contains the final estimate of the solution vector. */
/* fvec is an output array of length m which contains */
/* the functions evaluated at the output x. */
/* ftol is a nonnegative input variable. termination */
/* occurs when both the actual and predicted relative */
/* reductions in the sum of squares are at most ftol. */
/* therefore, ftol measures the relative error desired */
/* in the sum of squares. */
/* xtol is a nonnegative input variable. termination */
/* occurs when the relative error between two consecutive */
/* iterates is at most xtol. therefore, xtol measures the */
/* relative error desired in the approximate solution. */
/* gtol is a nonnegative input variable. termination */
/* occurs when the cosine of the angle between fvec and */
/* any column of the jacobian is at most gtol in absolute */
/* value. therefore, gtol measures the orthogonality */
/* desired between the function vector and the columns */
/* of the jacobian. */
/* maxfev is a positive integer input variable. termination */
/* occurs when the number of calls to fcn is at least */
/* maxfev by the end of an iteration. */
/* epsfcn is an input variable used in determining a suitable */
/* step length for the forward-difference approximation. this */
/* approximation assumes that the relative errors in the */
/* functions are of the order of epsfcn. if epsfcn is less */
/* than the machine precision, it is assumed that the relative */
/* errors in the functions are of the order of the machine */
/* precision. */
/* diag is an array of length n. if mode = 1 (see */
/* below), diag is internally set. if mode = 2, diag */
/* must contain positive entries that serve as */
/* multiplicative scale factors for the variables. */
/* mode is an integer input variable. if mode = 1, the */
/* variables will be scaled internally. if mode = 2, */
/* the scaling is specified by the input diag. other */
/* values of mode are equivalent to mode = 1. */
/* factor is a positive input variable used in determining the */
/* initial step bound. this bound is set to the product of */
/* factor and the euclidean norm of diag*x if nonzero, or else */
/* to factor itself. in most cases factor should lie in the */
/* interval (.1,100.). 100. is a generally recommended value. */
/* nprint is an integer input variable that enables controlled */
/* printing of iterates if it is positive. in this case, */
/* fcn is called with iflag = 0 at the beginning of the first */
/* iteration and every nprint iterations thereafter and */
/* immediately prior to return, with x and fvec available */
/* for printing. if nprint is not positive, no special calls */
/* of fcn with iflag = 0 are made. */
/* info is an integer output variable. if the user has */
/* terminated execution, info is set to the (negative) */
/* value of iflag. see description of fcn. otherwise, */
/* info is set as follows. */
/* info = 0 improper input parameters. */
/* info = 1 both actual and predicted relative reductions */
/* in the sum of squares are at most ftol. */
/* info = 2 relative error between two consecutive iterates */
/* is at most xtol. */
/* info = 3 conditions for info = 1 and info = 2 both hold. */
/* info = 4 the cosine of the angle between fvec and any */
/* column of the jacobian is at most gtol in */
/* absolute value. */
/* info = 5 number of calls to fcn has reached or */
/* exceeded maxfev. */
/* info = 6 ftol is too small. no further reduction in */
/* the sum of squares is possible. */
/* info = 7 xtol is too small. no further improvement in */
/* the approximate solution x is possible. */
/* info = 8 gtol is too small. fvec is orthogonal to the */
/* columns of the jacobian to machine precision. */
/* nfev is an integer output variable set to the number of */
/* calls to fcn. */
/* fjac is an output m by n array. the upper n by n submatrix */
/* of fjac contains an upper triangular matrix r with */
/* diagonal elements of nonincreasing magnitude such that */
/* t t t */
/* p *(jac *jac)*p = r *r, */
/* where p is a permutation matrix and jac is the final */
/* calculated jacobian. column j of p is column ipvt(j) */
/* (see below) of the identity matrix. the lower trapezoidal */
/* part of fjac contains information generated during */
/* the computation of r. */
/* ldfjac is a positive integer input variable not less than m */
/* which specifies the leading dimension of the array fjac. */
/* ipvt is an integer output array of length n. ipvt */
/* defines a permutation matrix p such that jac*p = q*r, */
/* where jac is the final calculated jacobian, q is */
/* orthogonal (not stored), and r is upper triangular */
/* with diagonal elements of nonincreasing magnitude. */
/* column j of p is column ipvt(j) of the identity matrix. */
/* qtf is an output array of length n which contains */
/* the first n elements of the vector (q transpose)*fvec. */
/* wa1, wa2, and wa3 are work arrays of length n. */
/* wa4 is a work array of length m. */
/* subprograms called */
/* user-supplied ...... fcn */
/* minpack-supplied ... dpmpar,enorm,fdjac2,lmpar,qrfac */
/* fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod */
/* argonne national laboratory. minpack project. march 1980. */
/* burton s. garbow, kenneth e. hillstrom, jorge j. more */
/* ********** */
/*< integer i,iflag,iter,j,l >*/
/*< >*/
/*< double precision dpmpar,enorm >*/
/*< >*/
/* Parameter adjustments */
--wa4;
--fvec;
--wa3;
--wa2;
--wa1;
--qtf;
--ipvt;
--diag;
--x;
fjac_dim1 = *ldfjac;
fjac_offset = 1 + fjac_dim1;
fjac -= fjac_offset;
/* Function Body */
/* epsmch is the machine precision. */
/*< epsmch = dpmpar(1) >*/
epsmch = dpmpar_(&c__1);
/*< info = 0 >*/
*info = 0;
/*< iflag = 0 >*/
iflag = 0;
/*< nfev = 0 >*/
*nfev = 0;
/* check the input parameters for errors. */
/*< >*/
if (*n <= 0 || *m < *n || *ldfjac < *m || *ftol < zero || *xtol < zero ||
*gtol < zero || *maxfev <= 0 || *factor <= zero) {
goto L300;
}
/*< if (mode .ne. 2) go to 20 >*/
if (*mode != 2) {
goto L20;
}
/*< do 10 j = 1, n >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< if (diag(j) .le. zero) go to 300 >*/
if (diag[j] <= zero) {
goto L300;
}
/*< 10 continue >*/
/* L10: */
}
/*< 20 continue >*/
L20:
/* evaluate the function at the starting point */
/* and calculate its norm. */
/*< iflag = 1 >*/
iflag = 1;
/*< call fcn(m,n,x,fvec,iflag) >*/
(*fcn)(m, n, &x[1], &fvec[1], &iflag, userdata);
/*< nfev = 1 >*/
*nfev = 1;
/*< if (iflag .lt. 0) go to 300 >*/
if (iflag < 0) {
goto L300;
}
/*< fnorm = enorm(m,fvec) >*/
fnorm = enorm_(m, &fvec[1]);
/* initialize levenberg-marquardt parameter and iteration counter. */
/*< par = zero >*/
par = zero;
/*< iter = 1 >*/
iter = 1;
/* beginning of the outer loop. */
/*< 30 continue >*/
L30:
/* calculate the jacobian matrix. */
/*< iflag = 2 >*/
iflag = 2;
/*< call fdjac2(fcn,m,n,x,fvec,fjac,ldfjac,iflag,epsfcn,wa4) >*/
fdjac2_(fcn, m, n, &x[1], &fvec[1], &fjac[fjac_offset], ldfjac, &
iflag, epsfcn, &wa4[1], userdata);
/*< nfev = nfev + n >*/
*nfev += *n;
/*< if (iflag .lt. 0) go to 300 >*/
if (iflag < 0) {
goto L300;
}
/* if requested, call fcn to enable printing of iterates. */
/*< if (nprint .le. 0) go to 40 >*/
if (*nprint <= 0) {
goto L40;
}
/*< iflag = 0 >*/
iflag = 0;
/*< if (mod(iter-1,nprint) .eq. 0) call fcn(m,n,x,fvec,iflag) >*/
if ((iter - 1) % *nprint == 0) {
(*fcn)(m, n, &x[1], &fvec[1], &iflag, userdata);
}
/*< if (iflag .lt. 0) go to 300 >*/
if (iflag < 0) {
goto L300;
}
/*< 40 continue >*/
L40:
/* compute the qr factorization of the jacobian. */
/*< call qrfac(m,n,fjac,ldfjac,.true.,ipvt,n,wa1,wa2,wa3) >*/
qrfac_(m, n, &fjac[fjac_offset], ldfjac, &c_true, &ipvt[1], n, &wa1[1], &
wa2[1], &wa3[1]);
/* on the first iteration and if mode is 1, scale according */
/* to the norms of the columns of the initial jacobian. */
/*< if (iter .ne. 1) go to 80 >*/
if (iter != 1) {
goto L80;
}
/*< if (mode .eq. 2) go to 60 >*/
if (*mode == 2) {
goto L60;
}
/*< do 50 j = 1, n >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< diag(j) = wa2(j) >*/
diag[j] = wa2[j];
/*< if (wa2(j) .eq. zero) diag(j) = one >*/
if (wa2[j] == zero) {
diag[j] = one;
}
/*< 50 continue >*/
/* L50: */
}
/*< 60 continue >*/
L60:
/* on the first iteration, calculate the norm of the scaled x */
/* and initialize the step bound delta. */
/*< do 70 j = 1, n >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< wa3(j) = diag(j)*x(j) >*/
wa3[j] = diag[j] * x[j];
/*< 70 continue >*/
/* L70: */
}
/*< xnorm = enorm(n,wa3) >*/
xnorm = enorm_(n, &wa3[1]);
/*< delta = factor*xnorm >*/
delta = *factor * xnorm;
/*< if (delta .eq. zero) delta = factor >*/
if (delta == zero) {
delta = *factor;
}
/*< 80 continue >*/
L80:
/* form (q transpose)*fvec and store the first n components in */
/* qtf. */
/*< do 90 i = 1, m >*/
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< wa4(i) = fvec(i) >*/
wa4[i__] = fvec[i__];
/*< 90 continue >*/
/* L90: */
}
/*< do 130 j = 1, n >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< if (fjac(j,j) .eq. zero) go to 120 >*/
if (fjac[j + j * fjac_dim1] == zero) {
goto L120;
}
/*< sum = zero >*/
sum = zero;
/*< do 100 i = j, m >*/
i__2 = *m;
for (i__ = j; i__ <= i__2; ++i__) {
/*< sum = sum + fjac(i,j)*wa4(i) >*/
sum += fjac[i__ + j * fjac_dim1] * wa4[i__];
/*< 100 continue >*/
/* L100: */
}
/*< temp = -sum/fjac(j,j) >*/
temp = -sum / fjac[j + j * fjac_dim1];
/*< do 110 i = j, m >*/
i__2 = *m;
for (i__ = j; i__ <= i__2; ++i__) {
/*< wa4(i) = wa4(i) + fjac(i,j)*temp >*/
wa4[i__] += fjac[i__ + j * fjac_dim1] * temp;
/*< 110 continue >*/
/* L110: */
}
/*< 120 continue >*/
L120:
/*< fjac(j,j) = wa1(j) >*/
fjac[j + j * fjac_dim1] = wa1[j];
/*< qtf(j) = wa4(j) >*/
qtf[j] = wa4[j];
/*< 130 continue >*/
/* L130: */
}
/* compute the norm of the scaled gradient. */
/*< gnorm = zero >*/
gnorm = zero;
/*< if (fnorm .eq. zero) go to 170 >*/
if (fnorm == zero) {
goto L170;
}
/*< do 160 j = 1, n >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< l = ipvt(j) >*/
l = ipvt[j];
/*< if (wa2(l) .eq. zero) go to 150 >*/
if (wa2[l] == zero) {
goto L150;
}
/*< sum = zero >*/
sum = zero;
/*< do 140 i = 1, j >*/
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< sum = sum + fjac(i,j)*(qtf(i)/fnorm) >*/
sum += fjac[i__ + j * fjac_dim1] * (qtf[i__] / fnorm);
/*< 140 continue >*/
/* L140: */
}
/*< gnorm = dmax1(gnorm,dabs(sum/wa2(l))) >*/
/* Computing MAX */
d__2 = gnorm, d__3 = (d__1 = sum / wa2[l], abs(d__1));
gnorm = max(d__2,d__3);
/*< 150 continue >*/
L150:
/*< 160 continue >*/
/* L160: */
;
}
/*< 170 continue >*/
L170:
/* test for convergence of the gradient norm. */
/*< if (gnorm .le. gtol) info = 4 >*/
if (gnorm <= *gtol) {
*info = 4;
}
/*< if (info .ne. 0) go to 300 >*/
if (*info != 0) {
goto L300;
}
/* rescale if necessary. */
/*< if (mode .eq. 2) go to 190 >*/
if (*mode == 2) {
goto L190;
}
/*< do 180 j = 1, n >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< diag(j) = dmax1(diag(j),wa2(j)) >*/
/* Computing MAX */
d__1 = diag[j], d__2 = wa2[j];
diag[j] = max(d__1,d__2);
/*< 180 continue >*/
/* L180: */
}
/*< 190 continue >*/
L190:
/* beginning of the inner loop. */
/*< 200 continue >*/
L200:
/* determine the levenberg-marquardt parameter. */
/*< >*/
lmpar_(n, &fjac[fjac_offset], ldfjac, &ipvt[1], &diag[1], &qtf[1], &delta,
&par, &wa1[1], &wa2[1], &wa3[1], &wa4[1]);
/* store the direction p and x + p. calculate the norm of p. */
/*< do 210 j = 1, n >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< wa1(j) = -wa1(j) >*/
wa1[j] = -wa1[j];
/*< wa2(j) = x(j) + wa1(j) >*/
wa2[j] = x[j] + wa1[j];
/*< wa3(j) = diag(j)*wa1(j) >*/
wa3[j] = diag[j] * wa1[j];
/*< 210 continue >*/
/* L210: */
}
/*< pnorm = enorm(n,wa3) >*/
pnorm = enorm_(n, &wa3[1]);
/* on the first iteration, adjust the initial step bound. */
/*< if (iter .eq. 1) delta = dmin1(delta,pnorm) >*/
if (iter == 1) {
delta = min(delta,pnorm);
}
/* evaluate the function at x + p and calculate its norm. */
/*< iflag = 1 >*/
iflag = 1;
/*< call fcn(m,n,wa2,wa4,iflag) >*/
(*fcn)(m, n, &wa2[1], &wa4[1], &iflag, userdata);
/*< nfev = nfev + 1 >*/
++(*nfev);
/*< if (iflag .lt. 0) go to 300 >*/
if (iflag < 0) {
goto L300;
}
/*< fnorm1 = enorm(m,wa4) >*/
fnorm1 = enorm_(m, &wa4[1]);
/* compute the scaled actual reduction. */
/*< actred = -one >*/
actred = -one;
/*< if (p1*fnorm1 .lt. fnorm) actred = one - (fnorm1/fnorm)**2 >*/
if (p1 * fnorm1 < fnorm) {
/* Computing 2nd power */
d__1 = fnorm1 / fnorm;
actred = one - d__1 * d__1;
}
/* compute the scaled predicted reduction and */
/* the scaled directional derivative. */
/*< do 230 j = 1, n >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< wa3(j) = zero >*/
wa3[j] = zero;
/*< l = ipvt(j) >*/
l = ipvt[j];
/*< temp = wa1(l) >*/
temp = wa1[l];
/*< do 220 i = 1, j >*/
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< wa3(i) = wa3(i) + fjac(i,j)*temp >*/
wa3[i__] += fjac[i__ + j * fjac_dim1] * temp;
/*< 220 continue >*/
/* L220: */
}
/*< 230 continue >*/
/* L230: */
}
/*< temp1 = enorm(n,wa3)/fnorm >*/
temp1 = enorm_(n, &wa3[1]) / fnorm;
/*< temp2 = (dsqrt(par)*pnorm)/fnorm >*/
temp2 = sqrt(par) * pnorm / fnorm;
/*< prered = temp1**2 + temp2**2/p5 >*/
/* Computing 2nd power */
d__1 = temp1;
/* Computing 2nd power */
d__2 = temp2;
prered = d__1 * d__1 + d__2 * d__2 / p5;
/*< dirder = -(temp1**2 + temp2**2) >*/
/* Computing 2nd power */
d__1 = temp1;
/* Computing 2nd power */
d__2 = temp2;
dirder = -(d__1 * d__1 + d__2 * d__2);
/* compute the ratio of the actual to the predicted */
/* reduction. */
/*< ratio = zero >*/
ratio = zero;
/*< if (prered .ne. zero) ratio = actred/prered >*/
if (prered != zero) {
ratio = actred / prered;
}
/* update the step bound. */
/*< if (ratio .gt. p25) go to 240 >*/
if (ratio > p25) {
goto L240;
}
/*< if (actred .ge. zero) temp = p5 >*/
if (actred >= zero) {
temp = p5;
}
/*< >*/
if (actred < zero) {
temp = p5 * dirder / (dirder + p5 * actred);
}
/*< if (p1*fnorm1 .ge. fnorm .or. temp .lt. p1) temp = p1 >*/
if (p1 * fnorm1 >= fnorm || temp < p1) {
temp = p1;
}
/*< delta = temp*dmin1(delta,pnorm/p1) >*/
/* Computing MIN */
d__1 = delta, d__2 = pnorm / p1;
delta = temp * min(d__1,d__2);
/*< par = par/temp >*/
par /= temp;
/*< go to 260 >*/
goto L260;
/*< 240 continue >*/
L240:
/*< if (par .ne. zero .and. ratio .lt. p75) go to 250 >*/
if (par != zero && ratio < p75) {
goto L250;
}
/*< delta = pnorm/p5 >*/
delta = pnorm / p5;
/*< par = p5*par >*/
par = p5 * par;
/*< 250 continue >*/
L250:
/*< 260 continue >*/
L260:
/* test for successful iteration. */
/*< if (ratio .lt. p0001) go to 290 >*/
if (ratio < p0001) {
goto L290;
}
/* successful iteration. update x, fvec, and their norms. */
/*< do 270 j = 1, n >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< x(j) = wa2(j) >*/
x[j] = wa2[j];
/*< wa2(j) = diag(j)*x(j) >*/
wa2[j] = diag[j] * x[j];
/*< 270 continue >*/
/* L270: */
}
/*< do 280 i = 1, m >*/
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< fvec(i) = wa4(i) >*/
fvec[i__] = wa4[i__];
/*< 280 continue >*/
/* L280: */
}
/*< xnorm = enorm(n,wa2) >*/
xnorm = enorm_(n, &wa2[1]);
/*< fnorm = fnorm1 >*/
fnorm = fnorm1;
/*< iter = iter + 1 >*/
++iter;
/*< 290 continue >*/
L290:
/* tests for convergence. */
/*< >*/
if (abs(actred) <= *ftol && prered <= *ftol && p5 * ratio <= one) {
*info = 1;
}
/*< if (delta .le. xtol*xnorm) info = 2 >*/
if (delta <= *xtol * xnorm) {
*info = 2;
}
/*< >*/
if (abs(actred) <= *ftol && prered <= *ftol && p5 * ratio <= one && *info
== 2) {
*info = 3;
}
/*< if (info .ne. 0) go to 300 >*/
if (*info != 0) {
goto L300;
}
/* tests for termination and stringent tolerances. */
/*< if (nfev .ge. maxfev) info = 5 >*/
if (*nfev >= *maxfev) {
*info = 5;
}
/*< >*/
if (abs(actred) <= epsmch && prered <= epsmch && p5 * ratio <= one) {
*info = 6;
}
/*< if (delta .le. epsmch*xnorm) info = 7 >*/
if (delta <= epsmch * xnorm) {
*info = 7;
}
/*< if (gnorm .le. epsmch) info = 8 >*/
if (gnorm <= epsmch) {
*info = 8;
}
/*< if (info .ne. 0) go to 300 >*/
if (*info != 0) {
goto L300;
}
/* end of the inner loop. repeat if iteration unsuccessful. */
/*< if (ratio .lt. p0001) go to 200 >*/
if (ratio < p0001) {
goto L200;
}
/* end of the outer loop. */
/*< go to 30 >*/
goto L30;
/*< 300 continue >*/
L300:
/* termination, either normal or user imposed. */
/*< if (iflag .lt. 0) info = iflag >*/
if (iflag < 0) {
*info = iflag;
}
/*< iflag = 0 >*/
iflag = 0;
/*< if (nprint .gt. 0) call fcn(m,n,x,fvec,iflag) >*/
if (*nprint > 0) {
(*fcn)(m, n, &x[1], &fvec[1], &iflag, userdata);
}
/*< return >*/
return 0;
/* last card of subroutine lmdif. */
/*< end >*/
} /* lmdif_ */
#ifdef __cplusplus
}
#endif
|