File: spBuild.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (1224 lines) | stat: -rw-r--r-- 32,987 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
/*
 *  MATRIX BUILD MODULE
 *
 *  Author:                     Advising professor:
 *     Kenneth S. Kundert           Alberto Sangiovanni-Vincentelli
 *     UC Berkeley
 */
/*!\file
 *  This file contains the routines associated with clearing, loading and
 *  preprocessing the matrix.
 *
 *  Objects that begin with the \a spc prefix are considered private
 *  and should not be used.
 *
 *  \author
 *  Kenneth S. Kundert <kundert@users.sourceforge.net>
 */
/*  >>> User accessible functions contained in this file:
 *  spClear
 *  spFindElement
 *  spGetElement
 *  spGetAdmittance
 *  spGetQuad
 *  spGetOnes
 *  spInstallInitInfo
 *  spGetInitInfo
 *  spInitialize
 *
 *  >>> Other functions contained in this file:
 *  Translate
 *  spcFindDiag
 *  spcCreateElement
 *  spcLinkRows
 *  EnlargeMatrix
 *  ExpandTranslationArrays
 */


/*
 *  Revision and copyright information.
 *
 *  Copyright (c) 1985-2003 by Kenneth S. Kundert
 */

#if 0
static char copyright[] =
    "Sparse1.4: Copyright (c) 1985-2003 by Kenneth S. Kundert";
#endif




/*
 *  IMPORTS
 *
 *  >>> Import descriptions:
 *  spConfig.h
 *     Macros that customize the sparse matrix routines.
 *  spMatrix.h
 *     Macros and declarations to be imported by the user.
 *  spDefs.h
 *     Matrix type and macro definitions for the sparse matrix routines.
 */

#define spINSIDE_SPARSE
#include <stdio.h>
#include "spConfig.h"
#include "spMatrix.h"
#include "spDefs.h"





/*
 *  Function declarations
 */

static void Translate( MatrixPtr, int*, int* );
static void EnlargeMatrix( MatrixPtr, int );
static void ExpandTranslationArrays( MatrixPtr, int );






/*!
 *  Sets every element of the matrix to zero and clears the error flag.
 *
 *  \param eMatrix
 *     Pointer to matrix that is to be cleared.
 */
/*  >>> Local variables:
 *  pElement  (ElementPtr)
 *     A pointer to the element being cleared.
 */

void
spClear( spMatrix eMatrix )
{
MatrixPtr  Matrix = (MatrixPtr)eMatrix;
register  ElementPtr  pElement;
register  int  I;

/* Begin `spClear'. */
    ASSERT_IS_SPARSE( Matrix );

/* Clear matrix. */
#if spCOMPLEX
    if (Matrix->PreviousMatrixWasComplex OR Matrix->Complex)
    {   for (I = Matrix->Size; I > 0; I--)
        {   pElement = Matrix->FirstInCol[I];
            while (pElement != NULL)
            {   pElement->Real = 0.0;
                pElement->Imag = 0.0;
                pElement = pElement->NextInCol;
            }
        }
    }
    else
#endif
    {   for (I = Matrix->Size; I > 0; I--)
        {   pElement = Matrix->FirstInCol[I];
            while (pElement != NULL)
            {   pElement->Real = 0.0;
                pElement = pElement->NextInCol;
            }
        }
    }

/* Empty the trash. */
    Matrix->TrashCan.Real = 0.0;
#if spCOMPLEX
    Matrix->TrashCan.Imag = 0.0;
#endif

    Matrix->Error = spOKAY;
    Matrix->Factored = NO;
    Matrix->SingularCol = 0;
    Matrix->SingularRow = 0;
    Matrix->PreviousMatrixWasComplex = Matrix->Complex;
    return;
}










/*!
 *  This routine is used to find an element given its indices.  It will not
 *  create it if it does not exist.
 *
 *  \return
 *  A pointer to the desired element, or \a NULL if it does not exist.
 *
 *  \param eMatrix
 *      Pointer to matrix.
 *  \param Row
 *      Row index for element.
 *  \param Col
 *      Column index for element.
 *
 *  \see spGetElement()
 */
/*  >>> Local variables:
 *  pElement  (ElementPtr)
 *      Pointer to an element in the matrix.
 */

spElement *
spFindElement(
    spMatrix eMatrix,
    int Row,
    int Col
)
{
MatrixPtr  Matrix = (MatrixPtr)eMatrix;
register ElementPtr  pElement;
int StartAt=0, Min = LARGEST_INTEGER;
#define BorderRight 0   /* Start at left border, move right. */
#define BorderDown  1   /* Start at top border, move down. */
#define DiagRight   2   /* Start at diagonal, move right. */
#define DiagDown    3   /* Start at diagonal, move down. */

/* Begin `spFindElement'. */
    if (Row == Col) return &Matrix->Diag[Row]->Real;

/* Determine where to start the search. */
    if (Matrix->RowsLinked)
    {   if ((Col >= Row) AND Matrix->Diag[Row])
        {   Min = Col - Row;
            StartAt = DiagRight;
        }
        else
        {   Min = Col;
            StartAt = BorderRight;
        }
    }
    if ((Row >= Col) AND Matrix->Diag[Col])
    {   if (Row - Col < Min)
            StartAt = DiagDown;
    }
    else if (Row < Min)
        StartAt = BorderDown;
    
/* Search column for element. */
    if ((StartAt == BorderDown) OR (StartAt == DiagDown))
    {   if (StartAt == BorderDown)
            pElement = Matrix->FirstInCol[Col];
        else
            pElement = Matrix->Diag[Col];

        while ((pElement != NULL) AND (pElement->Row < Row))
            pElement = pElement->NextInCol;
        if (pElement AND (pElement->Row == Row))
            return &pElement->Real;
        else
            return NULL;
    }

/* Search row for element. */
    if (StartAt == BorderRight)
        pElement = Matrix->FirstInRow[Row];
    else
        pElement = Matrix->Diag[Row];

    while ((pElement != NULL) AND (pElement->Col < Col))
        pElement = pElement->NextInRow;
    if (pElement AND (pElement->Col == Col))
        return &pElement->Real;
    else
        return NULL;
}









/*!
 *  Finds element [Row,Col] and returns a pointer to it.  If element is
 *  not found then it is created and spliced into matrix.  This routine
 *  is only to be used after spCreate() and before spMNA_Preorder(),
 *  spFactor() or spOrderAndFactor().  Returns a pointer to the
 *  real portion of an \a spElement.  This pointer is later used by
 *  \a spADD_xxx_ELEMENT to directly access element.
 *
 *  \return
 *  Returns a pointer to the element.  This pointer is then used to directly
 *  access the element during successive builds.
 *
 *  \param eMatrix
 *     Pointer to the matrix that the element is to be added to.
 *  \param Row
 *     Row index for element.  Must be in the range of [0..Size] unless
 *     the options \a EXPANDABLE or \a TRANSLATE are used. Elements placed in
 *     row zero are discarded.  In no case may \a Row be less than zero.
 *  \param Col
 *     Column index for element.  Must be in the range of [0..Size] unless
 *     the options \a EXPANDABLE or \a TRANSLATE are used. Elements placed in
 *     column zero are discarded.  In no case may \a Col be less than zero.

 *  \see spFindElement()
 */
/*  >>> Local variables:
 *  pElement  (RealNumber *)
 *     Pointer to the element.
 *
 *  >>> Possible errors:
 *  spNO_MEMORY
 *  Error is not cleared in this routine.
 */

spElement *
spGetElement(
    spMatrix eMatrix,
    int Row,
    int Col
)
{
MatrixPtr Matrix = (MatrixPtr)eMatrix;
ElementPtr pElement;

/* Begin `spGetElement'. */
    ASSERT_IS_SPARSE( Matrix );
    vASSERT( Row >= 0 AND Col >= 0, "Negative row or column number" );

    if ((Row == 0) OR (Col == 0))
        return &Matrix->TrashCan.Real;

#if NOT TRANSLATE
    vASSERT( NOT Matrix->Reordered,
             "Set TRANSLATE to add elements to a reordered matrix" );
#endif

#if TRANSLATE
    Translate( Matrix, &Row, &Col );
    if (Matrix->Error == spNO_MEMORY) return NULL;
#endif

#if NOT TRANSLATE
#if NOT EXPANDABLE
    vASSERT( (Row <= Matrix->Size) AND (Col <= Matrix->Size),
             "Row or column number too large" );
#endif

#if EXPANDABLE
/* Re-size Matrix if necessary. */
    if ((Row > Matrix->Size) OR (Col > Matrix->Size))
        EnlargeMatrix( Matrix, MAX(Row, Col) );
    if (Matrix->Error == spNO_MEMORY) return NULL;
#endif
#endif

    if ((Row != Col) OR ((pElement = Matrix->Diag[Row]) == NULL))
    {   /*
         * Element does not exist or does not reside along diagonal.  Search
         * for element and if it does not exist, create it.
         */
        pElement = spcCreateElement( Matrix, Row, Col,
                                     &(Matrix->FirstInRow[Row]),
                                     &(Matrix->FirstInCol[Col]), NO );
    }
/*
 * Cast pointer into a pointer to a RealNumber.  This requires that Real
 * be the first record in the MatrixElement structure.
 */
    return &pElement->Real;
}







#if TRANSLATE

/*
 *  TRANSLATE EXTERNAL INDICES TO INTERNAL
 *
 *  Convert internal row and column numbers to internal row and column numbers.
 *  Also updates Ext/Int maps.
 *
 *
 *  >>> Arguments:
 *  Matrix  <input>    (MatrixPtr)
 *      Pointer to the matrix.
 *  Row  <input/output>  (int *)
 *     Upon entry Row is either a external row number of an external node
 *     number.  Upon entry, the internal equivalent is supplied.
 *  Col  <input/output>  (int *)
 *     Upon entry Column is either a external column number of an external node
 *     number.  Upon entry, the internal equivalent is supplied.
 *
 *  >>> Local variables:
 *  ExtCol  (int)
 *     Temporary variable used to hold the external column or node number
 *     during the external to internal column number translation.
 *  ExtRow  (int)
 *     Temporary variable used to hold the external row or node number during
 *     the external to internal row number translation.
 *  IntCol  (int)
 *     Temporary variable used to hold the internal column or node number
 *     during the external to internal column number translation.
 *  IntRow  (int)
 *     Temporary variable used to hold the internal row or node number during
 *     the external to internal row number translation.
 */

static void
Translate( 
    MatrixPtr Matrix,
    int *Row,
    int *Col
)
{
register int IntRow, IntCol, ExtRow, ExtCol;

/* Begin `Translate'. */
    ExtRow = *Row;
    ExtCol = *Col;

/* Expand translation arrays if necessary. */
    if ((ExtRow > Matrix->AllocatedExtSize) OR
        (ExtCol > Matrix->AllocatedExtSize))
    {
        ExpandTranslationArrays( Matrix, MAX(ExtRow, ExtCol) );
        if (Matrix->Error == spNO_MEMORY) return;
    }

/* Set ExtSize if necessary. */
    if ((ExtRow > Matrix->ExtSize) OR (ExtCol > Matrix->ExtSize))
        Matrix->ExtSize = MAX(ExtRow, ExtCol);

/* Translate external row or node number to internal row or node number. */
    if ((IntRow = Matrix->ExtToIntRowMap[ExtRow]) == -1)
    {   Matrix->ExtToIntRowMap[ExtRow] = ++Matrix->CurrentSize;
        Matrix->ExtToIntColMap[ExtRow] = Matrix->CurrentSize;
        IntRow = Matrix->CurrentSize;

#if NOT EXPANDABLE
        vASSERT( IntRow <= Matrix->Size, "Matrix size fixed" );
#endif

#if EXPANDABLE
/* Re-size Matrix if necessary. */
        if (IntRow > Matrix->Size)
            EnlargeMatrix( Matrix, IntRow );
        if (Matrix->Error == spNO_MEMORY) return;
#endif

        Matrix->IntToExtRowMap[IntRow] = ExtRow;
        Matrix->IntToExtColMap[IntRow] = ExtRow;
    }

/* Translate external column or node number to internal column or node number.*/
    if ((IntCol = Matrix->ExtToIntColMap[ExtCol]) == -1)
    {   Matrix->ExtToIntRowMap[ExtCol] = ++Matrix->CurrentSize;
        Matrix->ExtToIntColMap[ExtCol] = Matrix->CurrentSize;
        IntCol = Matrix->CurrentSize;

#if NOT EXPANDABLE
        vASSERT( IntCol <= Matrix->Size, "Matrix size fixed" );
#endif

#if EXPANDABLE
/* Re-size Matrix if necessary. */
        if (IntCol > Matrix->Size)
            EnlargeMatrix( Matrix, IntCol );
        if (Matrix->Error == spNO_MEMORY) return;
#endif

        Matrix->IntToExtRowMap[IntCol] = ExtCol;
        Matrix->IntToExtColMap[IntCol] = ExtCol;
    }

    *Row = IntRow;
    *Col = IntCol;
    return;
}
#endif






#if QUAD_ELEMENT
/*!
 *  Performs same function as spGetElement() except rather than one
 *  element, all four matrix elements for a floating two terminal
 *  admittance component are added. This routine also works if component
 *  is grounded.  Positive elements are placed at [Node1,Node2] and
 *  [Node2,Node1].  This routine is only to be used after spCreate()
 *  and before spMNA_Preorder(), spFactor() or spOrderAndFactor().
 *
 *  \return
 *  Error code. Possible errors include \a spNO_MEMORY.
 *  Error is not cleared in this routine.
 *
 *  \param Matrix
 *     Pointer to the matrix that component is to be entered in.
 *  \param Node1
 *     Row and column indices for elements. Must be in the range of [0..Size]
 *     unless the options \a EXPANDABLE or \a TRANSLATE are used. Node zero is the
 *     ground node.  In no case may \a Node1 be less than zero.
 *  \param Node2
 *     Row and column indices for elements. Must be in the range of [0..Size]
 *     unless the options \a EXPANDABLE or \a TRANSLATE are used. Node zero is the
 *     ground node.  In no case may \a Node2 be less than zero.
 *  \param Template
 *     Collection of pointers to four elements that are later used to directly
 *     address elements.  User must supply the template, this routine will
 *     fill it.
 */

spError
spGetAdmittance(
    spMatrix Matrix,
    int Node1,
    int Node2,
    struct spTemplate *Template
)
{

/* Begin `spGetAdmittance'. */
    Template->Element1 = spGetElement(Matrix, Node1, Node1 );
    Template->Element2 = spGetElement(Matrix, Node2, Node2 );
    Template->Element3Negated = spGetElement( Matrix, Node2, Node1 );
    Template->Element4Negated = spGetElement( Matrix, Node1, Node2 );
    if
    (   (Template->Element1 == NULL)
        OR (Template->Element2 == NULL)
        OR (Template->Element3Negated == NULL)
        OR (Template->Element4Negated == NULL)
    )   return spNO_MEMORY;

    if (Node1 == 0)
        SWAP( RealNumber*, Template->Element1, Template->Element2 );

    return spOKAY;
}
#endif /* QUAD_ELEMENT */









#if QUAD_ELEMENT
/*!
 *  Similar to spGetAdmittance(), except that spGetAdmittance() only
 *  handles 2-terminal components, whereas spGetQuad() handles simple
 *  4-terminals as well.  These 4-terminals are simply generalized
 *  2-terminals with the option of having the sense terminals different
 *  from the source and sink terminals.  spGetQuad() adds four
 *  elements to the matrix.  Positive elements occur at [Row1,Col1]
 *  [Row2,Col2] while negative elements occur at [Row1,Col2] and [Row2,Col1].
 *  The routine works fine if any of the rows and columns are zero.
 *  This routine is only to be used after spCreate() and before
 *  spMNA_Preorder(), spFactor() or spOrderAndFactor()
 *  unless \a TRANSLATE is set true.
 *
 *  \return
 *  Error code. Possible errors include \a spNO_MEMORY.
 *  Error is not cleared in this routine.
 *
 *  \param Matrix
 *     Pointer to the matrix that component is to be entered in.
 *  \param Row1
 *     First row index for elements. Must be in the range of [0..Size]
 *     unless the options \a EXPANDABLE or \a TRANSLATE are used. Zero is the
 *     ground row.  In no case may Row1 be less than zero.
 *  \param Row2
 *     Second row index for elements. Must be in the range of [0..Size]
 *     unless the options \a EXPANDABLE or \a TRANSLATE are used. Zero is the
 *     ground row.  In no case may Row2 be less than zero.
 *  \param Col1
 *     First column index for elements. Must be in the range of [0..Size]
 *     unless the options \a EXPANDABLE or \a TRANSLATE are used. Zero is the
 *     ground column.  In no case may Col1 be less than zero.
 *  \param Col2
 *     Second column index for elements. Must be in the range of [0..Size]
 *     unless the options \a EXPANDABLE or \a TRANSLATE are used. Zero is the
 *     ground column.  In no case may Col2 be less than zero.
 *  \param Template
 *     Collection of pointers to four elements that are later used to directly
 *     address elements.  User must supply the template, this routine will
 *     fill it.
 */

spError
spGetQuad(
    spMatrix Matrix,
    int Row1,
    int Row2,
    int Col1,
    int Col2,
    struct  spTemplate  *Template
)
{
/* Begin `spGetQuad'. */
    Template->Element1 = spGetElement( Matrix, Row1, Col1);
    Template->Element2 = spGetElement( Matrix, Row2, Col2 );
    Template->Element3Negated = spGetElement( Matrix, Row2, Col1 );
    Template->Element4Negated = spGetElement( Matrix, Row1, Col2 );
    if
    (   (Template->Element1 == NULL)
        OR (Template->Element2 == NULL)
        OR (Template->Element3Negated == NULL)
        OR (Template->Element4Negated == NULL)
    )   return spNO_MEMORY;

    if (Template->Element1 == &((MatrixPtr)Matrix)->TrashCan.Real)
        SWAP( RealNumber *, Template->Element1, Template->Element2 );

    return spOKAY;
}
#endif /* QUAD_ELEMENT */









#if QUAD_ELEMENT
/*!
 *  Addition of four structural ones to matrix by index.
 *  Performs similar function to spGetQuad() except this routine is
 *  meant for components that do not have an admittance representation.
 *
 *  The following stamp is used: \code
 *         Pos  Neg  Eqn
 *  Pos  [  .    .    1  ]
 *  Neg  [  .    .   -1  ]
 *  Eqn  [  1   -1    .  ]
 *  \endcode
 *
 *  \return
 *  Error code. Possible errors include \a spNO_MEMORY.
 *  Error is not cleared in this routine.
 *
 *  \param Matrix
 *     Pointer to the matrix that component is to be entered in.
 *  \param Pos
 *     See stamp above. Must be in the range of [0..Size]
 *     unless the options \a EXPANDABLE or \a TRANSLATE are used. Zero is the
 *     ground row.  In no case may \a Pos be less than zero.
 *  \param Neg
 *     See stamp above. Must be in the range of [0..Size]
 *     unless the options \a EXPANDABLE or \a TRANSLATE are used. Zero is the
 *     ground row.  In no case may \a Neg be less than zero.
 *  \param Eqn
 *     See stamp above. Must be in the range of [0..Size]
 *     unless the options \a EXPANDABLE or \a TRANSLATE are used. Zero is the
 *     ground row.  In no case may \a Eqn be less than zero.
 *  \param Template
 *     Collection of pointers to four elements that are later used to directly
 *     address elements.  User must supply the template, this routine will
 *     fill it.
 */

spError
spGetOnes(
    spMatrix Matrix,
    int Pos,
    int Neg,
    int Eqn,
    struct spTemplate *Template
)
{
/* Begin `spGetOnes'. */
    Template->Element4Negated = spGetElement( Matrix, Neg, Eqn );
    Template->Element3Negated = spGetElement( Matrix, Eqn, Neg );
    Template->Element2 = spGetElement( Matrix, Pos, Eqn );
    Template->Element1 = spGetElement( Matrix, Eqn, Pos );
    if
    (   (Template->Element1 == NULL)
        OR (Template->Element2 == NULL)
        OR (Template->Element3Negated == NULL)
        OR (Template->Element4Negated == NULL)
    )   return spNO_MEMORY;

    spADD_REAL_QUAD( *Template, 1.0 );
    return spOKAY;
}
#endif /* QUAD_ELEMENT */







/*
 *  FIND DIAGONAL
 *
 *  This routine is used to find a diagonal element.  It will not
 *  create it if it does not exist.
 *
 *  >>> Returned:
 *  A pointer to the desired element, or NULL if it does not exist.
 *
 *  >>> Arguments:
 *  Matrix  <input>  (MatrixPtr)
 *      Pointer to matrix.
 *  Index  <input>  (int)
 *      Row, Col index for diagonal element.
 *
 *  >>> Local variables:
 *  pElement  (ElementPtr)
 *      Pointer to an element in the matrix.
 */

ElementPtr
spcFindDiag(
    MatrixPtr Matrix,
    register int Index
)
{
register ElementPtr  pElement;

/* Begin `spcFindDiag'. */
    pElement = Matrix->FirstInCol[Index];

/* Search column for element. */
    while ((pElement != NULL) AND (pElement->Row < Index))
        pElement = pElement->NextInCol;
    if (pElement AND (pElement->Row == Index))
        return pElement;
    else
        return NULL;
}








/*
 *  CREATE AND SPLICE ELEMENT INTO MATRIX
 *
 *  This routine is used to create new matrix elements and splice them into the
 *  matrix.
 *
 *  >>> Returned:
 *  A pointer to the element that was created is returned.
 *
 *  >>> Arguments:
 *  Matrix  <input>  (MatrixPtr)
 *      Pointer to matrix.
 *  Row  <input>  (int)
 *      Row index for element.
 *  Col  <input>  (int)
 *      Column index for element.
 *  ppToLeft  <input-output>  (ElementPtr *)
 *      This contains the address of the pointer to an element to the left
 *      of the one being created.  It is used to speed the search and if it
 *      is immediately to the left, it is updated with address of the
 *      created element.
 *  ppAbove  <input-output> (ElementPtr *)
 *      This contains the address of the pointer to an element above the
 *      one being created.  It is used to speed the search and it if it
 *      is immediatley above, it is updated with address of the created
 *      element.
 *  Fillin  <input>  (BOOLEAN)
 *      Flag that indicates if created element is to be a fill-in.
 *
 *  >>> Local variables:
 *  pElement  (ElementPtr)
 *      Pointer to an element in the matrix.
 *  pCreatedElement  (ElementPtr)
 *      Pointer to the desired element, the one that was just created.
 *
 *  >>> Possible errors:
 *  spNO_MEMORY
 */

ElementPtr
spcCreateElement(
    MatrixPtr Matrix,
    int Row,
    register int Col,
    register ElementPtr *ppToLeft,
    register ElementPtr *ppAbove,
    BOOLEAN Fillin
)
{
register ElementPtr  pElement, pCreatedElement;

/* Begin `spcCreateElement'. */

/* Find element immediately above the desired element. */
    pElement = *ppAbove;
    while ((pElement != NULL) AND (pElement->Row < Row))
    {   ppAbove = &pElement->NextInCol;
        pElement = *ppAbove;
    }
    if ((pElement != NULL) AND (pElement->Row == Row))
        return pElement;

/* The desired element does not exist, create it. */
    if (Fillin)
    {   pCreatedElement = spcGetFillin( Matrix );
        Matrix->Fillins++;

/* Update Markowitz counts and products. */
        ++Matrix->MarkowitzRow[Row];
        spcMarkoProd( Matrix->MarkowitzProd[Row],
                      Matrix->MarkowitzRow[Row],
                      Matrix->MarkowitzCol[Row] );
        if ((Matrix->MarkowitzRow[Row] == 1) AND
            (Matrix->MarkowitzCol[Row] != 0))
        {
            Matrix->Singletons--;
        }
        ++Matrix->MarkowitzCol[Col];
        spcMarkoProd( Matrix->MarkowitzProd[Col],
                      Matrix->MarkowitzCol[Col],
                      Matrix->MarkowitzRow[Col] );
        if ((Matrix->MarkowitzRow[Col] != 0) AND
            (Matrix->MarkowitzCol[Col] == 1))
        {
            Matrix->Singletons--;
        }
    }
    else
    {   pCreatedElement = spcGetElement( Matrix );
        Matrix->NeedsOrdering = YES;
    }
    if (pCreatedElement == NULL) return NULL;
    Matrix->Elements++;

/* Initialize Element. */
    pCreatedElement->Row = Row;
    pCreatedElement->Col = Col;
    pCreatedElement->Real = 0.0;
#if spCOMPLEX
    pCreatedElement->Imag = 0.0;
#endif
#if INITIALIZE
    pCreatedElement->pInitInfo = NULL;
#endif

/* If element is on diagonal, store pointer in Diag. */
    if (Row == Col) Matrix->Diag[Row] = pCreatedElement;

/* Splice element into column. */
    pCreatedElement->NextInCol = *ppAbove;
    *ppAbove = pCreatedElement;

/* Find Element immediately to the left of the fill-in. */
    if (Matrix->RowsLinked)
    {   pElement = *ppToLeft;
        while (pElement != NULL)
        {   if (pElement->Col < Col)
            {   ppToLeft = &pElement->NextInRow;
                pElement = *ppToLeft;
            }
            else break; /* while loop */
        }

/* Splice element into row. */
        pCreatedElement->NextInRow = *ppToLeft;
        *ppToLeft = pCreatedElement;
    }
    return pCreatedElement;
}








/*
 *
 *  LINK ROWS
 *
 *  This routine is used to generate the row links.  The spGetElement()
 *  routines do not create row links, which are needed by the spFactor()
 *  routines.
 *
 *  >>>  Arguments:
 *  Matrix  <input>  (MatrixPtr)
 *      Pointer to the matrix.
 *
 *  >>> Local variables:
 *  pElement  (ElementPtr)
 *      Pointer to an element in the matrix.
 *  FirstInRowEntry  (ElementPtr *)
 *      A pointer into the FirstInRow array.  Points to the FirstInRow entry
 *      currently being operated upon.
 *  FirstInRowArray  (ArrayOfElementPtrs)
 *      A pointer to the FirstInRow array.  Same as Matrix->FirstInRow but
 *      resides in a register and requires less indirection so is faster to
 *      use.
 *  Col  (int)
 *      Column currently being operated upon.
 */

void
spcLinkRows( MatrixPtr Matrix )
{
register  ElementPtr  pElement, *FirstInRowEntry;
register  ArrayOfElementPtrs  FirstInRowArray;
register  int  Col;

/* Begin `spcLinkRows'. */
    FirstInRowArray = Matrix->FirstInRow;
    for (Col = Matrix->Size; Col >= 1; Col--)
        FirstInRowArray[Col] = NULL;

    for (Col = Matrix->Size; Col >= 1; Col--)
    {
/* Generate row links for the elements in the Col'th column. */
        pElement = Matrix->FirstInCol[Col];

        while (pElement != NULL)
        {   pElement->Col = Col;
            FirstInRowEntry = &FirstInRowArray[pElement->Row];
            pElement->NextInRow = *FirstInRowEntry;
            *FirstInRowEntry = pElement;
            pElement = pElement->NextInCol;
        }
    }
    Matrix->RowsLinked = YES;
    return;
}








/*
 *  ENLARGE MATRIX
 *
 *  Increases the size of the matrix.
 *
 *  >>> Arguments:
 *  Matrix  <input>    (MatrixPtr)
 *      Pointer to the matrix.
 *  NewSize  <input>  (int)
 *     The new size of the matrix.
 *
 *  >>> Local variables:
 *  OldAllocatedSize  (int)
 *     The allocated size of the matrix before it is expanded.
 */

static void
EnlargeMatrix(
    MatrixPtr Matrix,
    register int NewSize
)
{
register int I, OldAllocatedSize = Matrix->AllocatedSize;

/* Begin `EnlargeMatrix'. */
    Matrix->Size = NewSize;

    if (NewSize <= OldAllocatedSize)
        return;

/* Expand the matrix frame. */
    NewSize = MAX( NewSize, (int)(EXPANSION_FACTOR * OldAllocatedSize) );
    Matrix->AllocatedSize = NewSize;

    if (( REALLOC(Matrix->IntToExtColMap, int, NewSize+1)) == NULL)
    {   Matrix->Error = spNO_MEMORY;
        return;
    }
    if (( REALLOC(Matrix->IntToExtRowMap, int, NewSize+1)) == NULL)
    {   Matrix->Error = spNO_MEMORY;
        return;
    }
    if (( REALLOC(Matrix->Diag, ElementPtr, NewSize+1)) == NULL)
    {   Matrix->Error = spNO_MEMORY;
        return;
    }
    if (( REALLOC(Matrix->FirstInCol, ElementPtr, NewSize+1)) == NULL)
    {   Matrix->Error = spNO_MEMORY;
        return;
    }
    if (( REALLOC(Matrix->FirstInRow, ElementPtr, NewSize+1)) == NULL)
    {   Matrix->Error = spNO_MEMORY;
        return;
    }

/*
 * Destroy the Markowitz and Intermediate vectors, they will be recreated
 * in spOrderAndFactor().
 */
    FREE( Matrix->MarkowitzRow );
    FREE( Matrix->MarkowitzCol );
    FREE( Matrix->MarkowitzProd );
    FREE( Matrix->DoRealDirect );
    FREE( Matrix->DoCmplxDirect );
    FREE( Matrix->Intermediate );
    Matrix->InternalVectorsAllocated = NO;

/* Initialize the new portion of the vectors. */
    for (I = OldAllocatedSize+1; I <= NewSize; I++)
    {   Matrix->IntToExtColMap[I] = I;
        Matrix->IntToExtRowMap[I] = I;
        Matrix->Diag[I] = NULL;
        Matrix->FirstInRow[I] = NULL;
        Matrix->FirstInCol[I] = NULL;
    }

    return;
}








#if TRANSLATE

/*
 *  EXPAND TRANSLATION ARRAYS
 *
 *  Increases the size arrays that are used to translate external to internal
 *  row and column numbers.
 *
 *  >>> Arguments:
 *  Matrix  <input>    (MatrixPtr)
 *      Pointer to the matrix.
 *  NewSize  <input>  (int)
 *     The new size of the translation arrays.
 *
 *  >>> Local variables:
 *  OldAllocatedSize  (int)
 *     The allocated size of the translation arrays before being expanded.
 */

static void
ExpandTranslationArrays(
    MatrixPtr Matrix,
    register int NewSize
)
{
register int I, OldAllocatedSize = Matrix->AllocatedExtSize;

/* Begin `ExpandTranslationArrays'. */
    Matrix->ExtSize = NewSize;

    if (NewSize <= OldAllocatedSize)
        return;

/* Expand the translation arrays ExtToIntRowMap and ExtToIntColMap. */
    NewSize = MAX( NewSize, (int)(EXPANSION_FACTOR * OldAllocatedSize) );
    Matrix->AllocatedExtSize = NewSize;

    if (( REALLOC(Matrix->ExtToIntRowMap, int, NewSize+1)) == NULL)
    {   Matrix->Error = spNO_MEMORY;
        return;
    }
    if (( REALLOC(Matrix->ExtToIntColMap, int, NewSize+1)) == NULL)
    {   Matrix->Error = spNO_MEMORY;
        return;
    }

/* Initialize the new portion of the vectors. */
    for (I = OldAllocatedSize+1; I <= NewSize; I++)
    {   Matrix->ExtToIntRowMap[I] = -1;
        Matrix->ExtToIntColMap[I] = -1;
    }

    return;
}
#endif









#if INITIALIZE
/*!
 *   Initialize the matrix.
 *
 *   With the \a INITIALIZE compiler option (see spConfig.h) set true,
 *   Sparse allows the user to keep initialization information with each
 *   structurally nonzero matrix element.  Each element has a pointer
 *   that is set and used by the user.  The user can set this pointer
 *   using spInstallInitInfo() and may be read using spGetInitInfo().  Both
 *   may be used only after the element exists.  The function
 *   spInitialize() is a user customizable way to initialize the matrix.
 *   Passed to this routine is a function pointer.  spInitialize() sweeps
 *   through every element in the matrix and checks the \a pInitInfo
 *   pointer (the user supplied pointer).  If the \a pInitInfo is \a NULL,
 *   which is true unless the user changes it (almost always true for
 *   fill-ins), then the element is zeroed.  Otherwise, the function
 *   pointer is called and passed the \a pInitInfo pointer as well as the
 *   element pointer and the external row and column numbers.  If the
 *   user sets the value of each element, then spInitialize() replaces
 *   spClear().
 *
 *   The user function is expected to return a nonzero integer if there
 *   is a fatal error and zero otherwise.  Upon encountering a nonzero
 *   return code, spInitialize() terminates, sets the error state of
 *   the matrix to be \a spMANGLED, and returns the error code.
 *
 *   \return
 *      Returns the return value of the \a pInit() function.
 *   \param eMatrix
 *      Pointer to matrix.
 *   \param pInit
 *      Pointer to a function that initializes an element.

 *   \see spClear()
 */

int
spInitialize(
    spMatrix eMatrix,
    int (*pInit)(
        spElement *pElement,
        spGenericPtr pInitInfo,
        int Row,
        int Col
    )
)
{
MatrixPtr Matrix = (MatrixPtr)eMatrix;
register ElementPtr pElement;
int J, Error, Col;

/* Begin `spInitialize'. */
    ASSERT_IS_SPARSE( Matrix );

#if spCOMPLEX
/* Clear imaginary part of matrix if matrix is real but was complex. */
    if (Matrix->PreviousMatrixWasComplex AND NOT Matrix->Complex)
    {   for (J = Matrix->Size; J > 0; J--)
        {   pElement = Matrix->FirstInCol[J];
            while (pElement != NULL)
            {   pElement->Imag = 0.0;
                pElement = pElement->NextInCol;
            }
        }
    }
#endif /* spCOMPLEX */

/* Initialize the matrix. */
    for (J = Matrix->Size; J > 0; J--)
    {   pElement = Matrix->FirstInCol[J];
        Col = Matrix->IntToExtColMap[J];
        while (pElement != NULL)
        {   if (pElement->pInitInfo == NULL)
            {   pElement->Real = 0.0;
#               if spCOMPLEX
                    pElement->Imag = 0.0;
#               endif
            }
            else
            {   Error = (*pInit)((RealNumber *)pElement, pElement->pInitInfo,
                                 Matrix->IntToExtRowMap[pElement->Row], Col);
                if (Error)
                {   Matrix->Error = spMANGLED;
                    return Error;
                }

            }
            pElement = pElement->NextInCol;
        }
    }

/* Empty the trash. */
    Matrix->TrashCan.Real = 0.0;
#if spCOMPLEX
    Matrix->TrashCan.Imag = 0.0;
#endif

    Matrix->Error = spOKAY;
    Matrix->Factored = NO;
    Matrix->SingularCol = 0;
    Matrix->SingularRow = 0;
    Matrix->PreviousMatrixWasComplex = Matrix->Complex;
    return 0;
}




/*!
 *   This function installs a pointer to a data structure that is used
 *   to contain initialization information to a matrix element. It is
 *   is then used by spInitialize() to initialize the matrix.
 *
 *   \param pElement
 *       Pointer to matrix element.
 *   \param pInitInfo
 *       Pointer to the data structure that will contain initialiation
 *       information.
 *   \see spInitialize()
 */

void
spInstallInitInfo(
    spElement *pElement,
    spGenericPtr pInitInfo
)
{
/* Begin `spInstallInitInfo'. */
    vASSERT( pElement != NULL, "Invalid element pointer" );

    ((ElementPtr)pElement)->pInitInfo = pInitInfo;
}


/*!
 *   This function returns a pointer to a data structure that is used
 *   to contain initialization information to a matrix element. 
 *
 *   \return
 *       The pointer to the initialiation information data structure
 *       that is associated with a particular matrix element.
 *
 *   \param pElement
 *       Pointer to the matrix element.
 *
 *   \see spInitialize()
 */
spGenericPtr
spGetInitInfo(
    spElement *pElement
)
{
/* Begin `spGetInitInfo'. */
    vASSERT( pElement != NULL, "Invalid element pointer" );

    return (spGenericPtr)((ElementPtr)pElement)->pInitInfo;
}
#endif /* INITIALIZE */