1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
/* tests/lbfgs-example.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "v3p_netlib.h"
/* *********************** */
/* SIMPLE DRIVER FOR LBFGS */
/* *********************** */
/* Example of driver for LBFGS routine, using a */
/* simple test problem. The solution point is at */
/* X=(1,...,1) and the optimal function value of 0. */
/* JORGE NOCEDAL */
/* *** July 1990 *** */
/*< PROGRAM SDRIVE >*/
/* Main program */ int main()
{
/* System generated locals */
integer i__1;
doublereal d__1, d__2;
/* Local variables */
doublereal f, g[2000];
integer j, m, n;
doublereal w[30014], x[2000], t1, t2, eps, diag[2000], xtol;
integer iflag, icall;
logical diagco;
integer iprint[2];
v3p_netlib_lbfgs_global_t lbfgs_global;
v3p_netlib_lbfgs_init(&lbfgs_global);
/*< PARAMETER(NDIM=2000,MSAVE=7,NWORK=NDIM*(2*MSAVE +1)+2*MSAVE) >*/
/*< DOUBLE PRECISION X(NDIM),G(NDIM),DIAG(NDIM),W(NWORK) >*/
/*< DOUBLE PRECISION F,EPS,XTOL,GTOL,T1,T2,STPMIN,STPMAX >*/
/*< INTEGER IPRINT(2),IFLAG,ICALL,N,M,MP,LP,J >*/
/*< LOGICAL DIAGCO >*/
/* The driver for LBFGS must always declare LB2 as EXTERNAL */
/*< EXTERNAL LB2 >*/
/*< COMMON /LB3/MP,LP,GTOL,STPMIN,STPMAX >*/
/*< N=100 >*/
n = 100;
/*< M=5 >*/
m = 5;
/*< IPRINT(1)= 1 >*/
iprint[0] = 1;
/*< IPRINT(2)= 0 >*/
iprint[1] = 0;
/* We do not wish to provide the diagonal matrices Hk0, and */
/* therefore set DIAGCO to FALSE. */
/*< DIAGCO= .FALSE. >*/
diagco = FALSE_;
/*< EPS= 1.0D-5 >*/
eps = 1e-5;
/*< XTOL= 1.0D-16 >*/
xtol = 1e-16;
/*< ICALL=0 >*/
icall = 0;
/*< IFLAG=0 >*/
iflag = 0;
/*< DO 10 J=1,N,2 >*/
i__1 = n;
for (j = 1; j <= i__1; j += 2) {
/*< X(J)=-1.2D0 >*/
x[j - 1] = -1.2;
/*< X(J+1)=1.D0 >*/
x[j] = 1.;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< 20 CONTINUE >*/
L20:
/*< F= 0.D0 >*/
f = 0.;
/*< DO 30 J=1,N,2 >*/
i__1 = n;
for (j = 1; j <= i__1; j += 2) {
/*< T1= 1.D0-X(J) >*/
t1 = 1. - x[j - 1];
/*< T2= 1.D1*(X(J+1)-X(J)**2) >*/
/* Computing 2nd power */
d__1 = x[j - 1];
t2 = (x[j] - d__1 * d__1) * 10.;
/*< G(J+1)= 2.D1*T2 >*/
g[j] = t2 * 20.;
/*< G(J)= -2.D0*(X(J)*G(J+1)+T1) >*/
g[j - 1] = (x[j - 1] * g[j] + t1) * -2.;
/*< F= F+T1**2+T2**2 >*/
/* Computing 2nd power */
d__1 = t1;
/* Computing 2nd power */
d__2 = t2;
f = f + d__1 * d__1 + d__2 * d__2;
/*< 30 CONTINUE >*/
/* L30: */
}
/*< CALL LBFGS(N,M,X,F,G,DIAGCO,DIAG,IPRINT,EPS,XTOL,W,IFLAG) >*/
v3p_netlib_lbfgs_(
&n, &m, x, &f, g, &diagco, diag, iprint, &eps, &xtol, w, &iflag,
&lbfgs_global);
/*< IF(IFLAG.LE.0) GO TO 50 >*/
if (iflag <= 0) {
goto L50;
}
/*< ICALL=ICALL + 1 >*/
++icall;
/* We allow at most 2000 evaluations of F and G */
/*< IF(ICALL.GT.2000) GO TO 50 >*/
if (icall > 2000) {
goto L50;
}
/*< GO TO 20 >*/
goto L20;
/*< 50 CONTINUE >*/
L50:
/*< END >*/
return 0;
} /* MAIN__ */
|