1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
/* lbfgsb-example1.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "v3p_netlib.h"
/* DRIVER 1 */
/* -------------------------------------------------------------- */
/* SIMPLE DRIVER FOR L-BFGS-B (version 2.1) */
/* -------------------------------------------------------------- */
/* L-BFGS-B is a code for solving large nonlinear optimization */
/* problems with simple bounds on the variables. */
/* The code can also be used for unconstrained problems and is */
/* as efficient for these problems as the earlier limited memory */
/* code L-BFGS. */
/* This is the simplest driver in the package. It uses all the */
/* default settings of the code. */
/* References: */
/* [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited */
/* memory algorithm for bound constrained optimization'', */
/* SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208. */
/* [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN */
/* Subroutines for Large Scale Bound Constrained Optimization'' */
/* Tech. Report, NAM-11, EECS Department, Northwestern University, */
/* 1994. */
/* (Postscript files of these papers are available via anonymous */
/* ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.) */
/* * * * */
/* NEOS, November 1994. (Latest revision June 1996.) */
/* Optimization Technology Center. */
/* Argonne National Laboratory and Northwestern University. */
/* Written by */
/* Ciyou Zhu */
/* in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. */
/* NOTE: The user should adapt the subroutine 'timer' if 'etime' is */
/* not available on the system. An example for system */
/* AIX Version 3.2 is available at the end of this driver. */
/* ************** */
/*< program driver >*/
/* Main program */ int main()
{
/* System generated locals */
integer i__1;
doublereal d__1, d__2;
/* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
integer s_cmp(char *, char *, ftnlen, ftnlen);
/* Local variables */
doublereal f, g[1024];
integer i__;
doublereal l[1024];
integer m, n;
doublereal u[1024], x[1024], t1, t2, wa[42584];
integer nbd[1024], iwa[3072];
char task[60];
doublereal factr;
char csave[60];
doublereal dsave[29];
integer isave[44];
logical lsave[4];
doublereal pgtol;
integer iprint;
/* This simple driver demonstrates how to call the L-BFGS-B code to */
/* solve a sample problem (the extended Rosenbrock function */
/* subject to bounds on the variables). The dimension n of this */
/* problem is variable. */
/*< integer nmax, mmax >*/
/*< parameter (nmax=1024, mmax=17) >*/
/* nmax is the dimension of the largest problem to be solved. */
/* mmax is the maximum number of limited memory corrections. */
/* Declare the variables needed by the code. */
/* A description of all these variables is given at the end of */
/* the driver. */
/*< character*60 task, csave >*/
/*< logical lsave(4) >*/
/*< >*/
/*< >*/
/* Declare a few additional variables for this sample problem. */
/*< double precision t1, t2 >*/
/*< integer i >*/
/* We wish to have output at every iteration. */
/*< iprint = 1 >*/
iprint = 1;
/* We specify the tolerances in the stopping criteria. */
/*< factr=1.0d+7 >*/
factr = 1e7;
/*< pgtol=1.0d-5 >*/
pgtol = 1e-5;
/* We specify the dimension n of the sample problem and the number */
/* m of limited memory corrections stored. (n and m should not */
/* exceed the limits nmax and mmax respectively.) */
/*< n=25 >*/
n = 25;
/*< m=5 >*/
m = 5;
/* We now provide nbd which defines the bounds on the variables: */
/* l specifies the lower bounds, */
/* u specifies the upper bounds. */
/* First set bounds on the odd-numbered variables. */
/*< do 10 i=1,n,2 >*/
i__1 = n;
for (i__ = 1; i__ <= i__1; i__ += 2) {
/*< nbd(i)=2 >*/
nbd[i__ - 1] = 2;
/*< l(i)=1.0d0 >*/
l[i__ - 1] = 1.;
/*< u(i)=1.0d2 >*/
u[i__ - 1] = 100.;
/*< 10 continue >*/
/* L10: */
}
/* Next set bounds on the even-numbered variables. */
/*< do 12 i=2,n,2 >*/
i__1 = n;
for (i__ = 2; i__ <= i__1; i__ += 2) {
/*< nbd(i)=2 >*/
nbd[i__ - 1] = 2;
/*< l(i)=-1.0d2 >*/
l[i__ - 1] = -100.;
/*< u(i)=1.0d2 >*/
u[i__ - 1] = 100.;
/*< 12 continue >*/
/* L12: */
}
/* We now define the starting point. */
/*< do 14 i=1,n >*/
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< x(i)=3.0d0 >*/
x[i__ - 1] = 3.;
/*< 14 continue >*/
/* L14: */
}
/*< write (6,16) >*/
/*
16 format(/,5x, 'Solving sample problem.',
+ /,5x, ' (f = 0.0 at the optimal solution.)',/)
*/
#if 0
printf(" Solving sample problem.\n"
" (f = 0.0 at the optimal solution.)\n");
#endif
/*< >*/
/* We start the iteration by initializing task. */
/*< task = 'START' >*/
s_copy(task, "START", (ftnlen)60, (ftnlen)5);
/* ------- the beginning of the loop ---------- */
/*< 111 continue >*/
L111:
/* This is the call to the L-BFGS-B code. */
/*< >*/
setulb_(&n, &m, x, l, u, nbd, &f, g, &factr, &pgtol, wa, iwa, task, &
iprint, csave, lsave, isave, dsave);
/*< if (task(1:2) .eq. 'FG') then >*/
if (s_cmp(task, "FG", (ftnlen)2, (ftnlen)2) == 0) {
/* the minimization routine has returned to request the */
/* function f and gradient g values at the current x. */
/* Compute function value f for the sample problem. */
/*< f=.25d0*(x(1)-1.d0)**2 >*/
/* Computing 2nd power */
d__1 = x[0] - 1.;
f = d__1 * d__1 * .25;
/*< do 20 i=2,n >*/
i__1 = n;
for (i__ = 2; i__ <= i__1; ++i__) {
/*< f=f+(x(i)-x(i-1)**2)**2 >*/
/* Computing 2nd power */
d__2 = x[i__ - 2];
/* Computing 2nd power */
d__1 = x[i__ - 1] - d__2 * d__2;
f += d__1 * d__1;
/*< 20 continue >*/
/* L20: */
}
/*< f=4.d0*f >*/
f *= 4.;
/* Compute gradient g for the sample problem. */
/*< t1=x(2)-x(1)**2 >*/
/* Computing 2nd power */
d__1 = x[0];
t1 = x[1] - d__1 * d__1;
/*< g(1)=2.d0*(x(1)-1.d0)-1.6d1*x(1)*t1 >*/
g[0] = (x[0] - 1.) * 2. - x[0] * 16. * t1;
/*< do 22 i=2,n-1 >*/
i__1 = n - 1;
for (i__ = 2; i__ <= i__1; ++i__) {
/*< t2=t1 >*/
t2 = t1;
/*< t1=x(i+1)-x(i)**2 >*/
/* Computing 2nd power */
d__1 = x[i__ - 1];
t1 = x[i__] - d__1 * d__1;
/*< g(i)=8.d0*t2-1.6d1*x(i)*t1 >*/
g[i__ - 1] = t2 * 8. - x[i__ - 1] * 16. * t1;
/*< 22 continue >*/
/* L22: */
}
/*< g(n)=8.d0*t1 >*/
g[n - 1] = t1 * 8.;
/* go back to the minimization routine. */
/*< goto 111 >*/
goto L111;
/*< endif >*/
}
/*< if (task(1:5) .eq. 'NEW_X') goto 111 >*/
if (s_cmp(task, "NEW_X", (ftnlen)5, (ftnlen)5) == 0) {
goto L111;
}
/* the minimization routine has returned with a new iterate, */
/* and we have opted to continue the iteration. */
/* ---------- the end of the loop ------------- */
/* If task is neither FG nor NEW_X we terminate execution. */
/*< stop >*/
/*< end >*/
return 0;
} /* MAIN__ */
|