File: ClusteringOutputEvaluator.txx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (161 lines) | stat: -rw-r--r-- 4,279 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    ClusteringOutputEvaluator.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __ClusteringOutputEvaluator_txx
#define __ClusteringOutputEvaluator_txx

#include "ClusteringOutputEvaluator.h"

template< class TSample >
ClusteringOutputEvaluator< TSample >
::ClusteringOutputEvaluator()
{
  m_Truth = 0 ;
  m_NumberOfClasses = 0 ;
}

template< class TSample >
ClusteringOutputEvaluator< TSample > 
::~ClusteringOutputEvaluator()
{
}

template< class TSample >
void
ClusteringOutputEvaluator< TSample > 
::SetTruth(TSample* sample)
{
  m_Truth = sample ;
}

template< class TSample >
void
ClusteringOutputEvaluator< TSample > 
::SetClusteringOutput(ClusteringOutputType* labels)
{
  m_ClusteringOutput = labels ;
}

template< class TSample >
const int 
ClusteringOutputEvaluator< TSample > 
::GetSize(const unsigned int classLabel ) const
{
  return m_Sizes[this->GetClassIndex(classLabel)] ;
}

template< class TSample >
const int
ClusteringOutputEvaluator< TSample > 
::GetNumberOfMatches(const unsigned int classLabel ) const
{
  return m_NumberOfMatches[this->GetClassIndex(classLabel)] ;
}
  
template< class TSample >
const std::vector< int >&
ClusteringOutputEvaluator< TSample > 
::GetInclusionErrors(const unsigned int classLabel) const
{
  return m_InclusionErrors[this->GetClassIndex(classLabel)] ;
}

template< class TSample >
const std::vector< int >&
ClusteringOutputEvaluator< TSample > 
::GetExclusionErrors(const unsigned int classLabel) const 
{
  return m_ExclusionErrors[this->GetClassIndex(classLabel)] ;
}

template< class TSample >
void
ClusteringOutputEvaluator< TSample > 
::SetClassLabels(const std::vector< unsigned int >& classLabels)
{
  m_ClassLabels = classLabels ;
  m_NumberOfClasses = m_ClassLabels.size() ;
  m_Sizes.resize(m_NumberOfClasses) ;
  m_NumberOfMatches.resize(m_NumberOfClasses) ;
  m_InclusionErrors.resize(m_NumberOfClasses) ;
  m_ExclusionErrors.resize(m_NumberOfClasses) ;
  for ( int i = 0 ; i < m_NumberOfClasses ; i++ )
    {
      m_InclusionErrors[i].resize(m_NumberOfClasses) ;
      m_ExclusionErrors[i].resize(m_NumberOfClasses) ;
    }
}

template< class TSample >
unsigned int
ClusteringOutputEvaluator< TSample > 
::GetClassIndex(const unsigned int classLabel) const
{
  for ( unsigned int i = 0 ; i < m_NumberOfClasses ; i++ )
    {
      if ( classLabel == m_ClassLabels[i])
        {
          return i ;
        }
    }
 
 return 0 ;
}

template< class TSample >
void
ClusteringOutputEvaluator< TSample > 
::GenerateData()
{

  for ( int i = 0 ; i < m_NumberOfClasses ; i++ )
    {
      m_Sizes[i] = 0 ;
      m_NumberOfMatches[i] = 0 ;
      std::fill(m_InclusionErrors[i].begin(), m_InclusionErrors[i].end(), 0) ;
      std::fill(m_ExclusionErrors[i].begin(), m_ExclusionErrors[i].end(), 0) ;
    }

//   std::copy(m_ClassLabels.begin(), m_ClassLabels.end(), 
//             std::ostream_iterator<std::string>(std::cout, " ") ) ;
//   std::cout << std::endl ;
  typename TSample::Iterator t_iter = m_Truth->Begin() ;
  ClusteringOutputType::iterator o_iter = m_ClusteringOutput->begin() ;
  unsigned int trueLabel ;
  unsigned int estimatedLabel ;
  while ( o_iter != m_ClusteringOutput->end() )
    {
      
      trueLabel = this->GetClassIndex(t_iter.GetMeasurementVector()[0]) ;
      estimatedLabel = this->GetClassIndex(*o_iter) ;
      m_Sizes[estimatedLabel] += 1 ;
      
      if ( estimatedLabel == trueLabel)
        {
          m_NumberOfMatches[trueLabel] += 1 ;
        }
      else
        {
          // error
          m_ExclusionErrors[trueLabel][estimatedLabel] += 1 ;
          m_InclusionErrors[estimatedLabel][trueLabel] += 1 ;
        }
      ++t_iter ;
      ++o_iter ;
    }
}

#endif